
HAL Id: hal-00667519
https://hal.univ-cotedazur.fr/hal-00667519v1

Preprint submitted on 18 May 2012 (v1), last revised 18 May 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Positively curved Riemannian locally symmetric spaces
are positively squared distance curved

Philippe Delanoë, François Rouvière

To cite this version:
Philippe Delanoë, François Rouvière. Positively curved Riemannian locally symmetric spaces are
positively squared distance curved. 2012. �hal-00667519v1�

https://hal.univ-cotedazur.fr/hal-00667519v1
https://hal.archives-ouvertes.fr


Positively curved Riemannian locally symmetric

spaces are positively squared distance curved∗

Philippe Delanoë† and François Rouvière

Abstract

The squared distance curvature is a kind of two-point curvature the
sign of which turned out crucial for the smoothness of optimal trans-
portation maps on Riemannian manifolds. Positivity properties of that
new curvature have been established recently for all the simply con-
nected compact rank one symmetric spaces, except the Cayley plane.
Direct proofs were given for the sphere, an indirect one (via the Hopf
fibrations) for the complex and quaternionic projective spaces. Here,
we present a direct proof of a property implying all the preceding ones,
valid on every positively curved Riemannian locally symmetric space.

1 Introduction

A new notion of curvature was discovered in [MTW05] while investigat-
ing the smoothness of the solution of Monge’s problem posed with smooth
data (a problem briefly described below, see [Vil09]). The sign of a fourth
order expression involving solely the cost function c of the problem, a two-
point function, turned out crucial for the smoothness issue. The curva-
ture nature of that expression (actually, of a push-forward of it, called
cross-curvature) was elucidated in [KM10]. The expression itself was called
cost-curvature [Loe09, Loe11] or c-curvature [DG10, DG] or else, up to a 3

2
normalization factor, MTW tensor [FRV]. On a closed Riemannian mani-
fold M (closed meaning here: compact connected without boundary), the
Brenier–McCann cost function, equal to (half) the distance d squared, is
an emblematic example for which Monge’s problem with smooth data can
be solved [Bre87, Bre91, McC01], in other words, for which one can find
a measurable map F : M → M which pushes a given smooth positive
probability measure dµ to another such one, and minimizes the total cost
functional

∫
M

d2(m, F (m)) dµ. In that case, the optimal map must read
F (m) = expm(∇u(m)) for some potential function u : M → R and the
c-curvature may be defined as follows:
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Definition 1 (c-curvature) Let m ∈ M and V ∈ TmM be such that
the geodesic t ∈ [0, 1] → expm(tV ) contains no cut point of m. For each

(X, Y ) ∈
(
TmM

)2
, the c-curvature at (m, V, X, Y ) is given by:

C(m, V )(X, Y ) = − ∂4

∂τ2 ∂t2
c
(
expm(tX), expm(V +τY )

)∣∣∣
t=0=τ

, with c =
1

2
d2.

The smoothness of the optimal map F is analyzed by viewing F as a diffeo-
morphism whose potential function u satisfies the Monge–Ampère equation
which arises as the change of variable (or Jacobian) equation expressing the
prescribed measure transport condition. The authors of [MTW05] were able
to derive from that equation an interior one-sided a priori estimate on the
second derivatives of u based on the following condition which they denoted
by (A3): there exists a constant σ > 0 such that, for each (m, V, X, Y ) as
in Definition 1, the lower bound C(m, V )(X, Y ) > σ|X|2|Y |2 holds provided
X and Y are orthogonal. Assuming this condition forces the manifold M

to have its curvature bounded below by 3
2σ [Loe09] (see Remark 1 below).

Neil Trudinger conjectured that a closed Riemannian manifold should satisfy
(A3) provided it is positively curved with slowly varying Riemann tensor.
The class of Riemannian locally symmetric spaces with positive curvature
is thus a privileged one as regards the smoothness issue in optimal trans-
portation theory. In [Loe11], condition (A3) was verified on the standard
n-sphere and the desired smoothness result for the map F followed from
[Del04, DL06]. In order to deal with more general manifolds, variants of
(A3) subsequently appeared, namely:

(i) the weaker condition (A3W) of [TW09] obtained by letting σ = 0
in (A3), a condition shown to be necessary for the continuity of the
optimal transport map [Loe09];

and two conditions due to Kim–McCann [KM] (see also [DG]):

(ii) the non-negatively c-curved (or NNCC) condition, obtained by drop-
ping the condition X ⊥ Y in (A3W);

(iii) the almost-positively c-curved (or APCC) condition, obtained from
(NNCC) by further requiring that C(m, V )(X, Y ) = 0 if and only if
the span of the vectors (V,X, Y ) has dimension at most 1.

The condition (NNCC) is stable under Riemannian products, unlike (A3W)
if one of the factors does not satisfy (NNCC), and each of the above condi-
tions is stable under Riemannian submersion [KM]. Importantly, the condi-
tion (APCC) holds on S

n [KM] (see also [Loe11, DG10, FR09]). Combining
the latter result with the former stability one, applied to the Hopf fibrations
S

2k+1 → CP k [Bes78, Kli82] and S
4k+3 → HP k [Bes78, GWZ86, Kar], Kim

and McCann inferred that (A3) and (APCC) hold on CP k and HP k [KM].
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Among simply connected compact rank one symmetric spaces, the sole case
of OP 2 remains open [Car26, Car27, Hel78, Kar]. The latter cannot be
submersed by S

23 with totally geodesic fibres (see [FIP04] and references
therein). In the present note, we fill this gap by giving a direct proof of a
somewhat stronger result, inspired from [DG], namely:

Theorem 1 Let M be a closed Riemannian manifold. If M is a positively
curved Riemannian locally symmetric space, there exists a constant σ > 0
such that, for each (m, V ) ∈ M × TmM as in Definition 1 and for every
couple (X, Y ) of nonzero vectors of TmM , setting x = X

|X| , y = Y
|Y | , the

following inequality holds:

(1) C(m, V )(X, Y ) > σA2(m, V, x, y)|X|2|Y |2,

where A2(m, V, x, y) = 1 − 〈x, y〉2 + |V |2 − 〈x, V 〉2 + |V |2 − 〈y, V 〉2 is the
sum of the squared areas of the parallelograms of TmM respectively defined
by the couple of vectors (x, y), (x, V ), (y, V ).

By the Cauchy–Schwarz inequality, A2(m, V, x, y) is nonnegative, van-
ishing if and only if the span of (V, x, y) has dimension at most 1. Moreover,
A2(m, V, x, y) > 1 if x ⊥ y. So Theorem 1 implies that the conditions (A3)
and (APCC) hold on every closed positively curved Riemannian locally sym-
metric space. For convenience, let us call a manifold positively c-curved, or
PCC, anytime it satisfies the conclusion of Theorem 1.

Remark 1 On every closed positively curved Riemannian manifold, the
inequality (1) is obviously fulfilled along the zero section of TM, that is
at V = 0, due to the identity C(m, 0)(X, Y ) ≡ 2

3Sm(X, Y, X, Y ), where Sm

denotes the sectional curvature tensor of M at the point m [Loe09, DG10].
Henceforth, we take V 6= 0 with no loss of generality.

Theorem 1 combined with the smoothness arguments given in [KM]
yields the smoothness of the solution of Monge’s problem with smooth data
posed on an arbitrary simply connected positively curved Riemannian lo-
cally symmetric space. Dropping simple connectedness, such a smoothness
result still holds by a standard covering space argument [DG10, p.412].

The outline of the paper is as follows. Section 2 contains a direct unified
proof of Theorem 1 based on the validity of the latter for constant curvature
spheres. The validity in question is established in Section 3. Finally, in
Section 4, we enlarge the scope of Theorem 1 and point out an open question.

2 Reduction of the proof to the case of constant
curvature spheres

In this section, we prove the following result:
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Proposition 1 If Theorem 1 holds for constant curvature spheres, it holds
for any closed positively curved Riemannian locally symmetric space.

We will proceed by direct intrinsic calculations. Following Loeper’s idea
[Loe11], we will first compute a convenient expression of the Jacobi quadratic
form which arises by taking the two t-derivatives of the cost function c indi-
cated in Definition 1. Then, we will be ready to differentiate that expression
twice with respect to τ and obtain the desired c-curvature. Finally, taking
it for granted on S

n[1], we will establish the lower bound (1) in the general
case. Accordingly, the proof of Proposition 1 splits into three steps.

2.1 Step 1: Jacobi quadratic form

On a closed Riemannian manifold M , for each (m, V ) as in Definition 1 and
X ∈ TmM , the second derivative of the function t 7→ c(expm(tX), expm(V ))
at t = 0 is given by [DG10, FRV, Vil09]:

(2)
∂2

∂t2
c
(
expm(tX), expm(V )

)∣∣∣
t=0

=
〈
JV (X), X

〉
,

where JV is a symmetric endomorphism of TmM constructed as follows.
Given V ∈ TmM such that the geodesic t ∈ [0, 1] → γ(t) = expm(tV )
contains no conjugate point, the Jacobi equation along γ (recalled below,
see for instance [CE75, Kli82]) admits a unique solution t ∈ [0, 1] → J(t) ∈
Tγ(t)M with given Cauchy data

(
J(0),

∇J

dt
(0)

)
. Solutions of the Jacobi

equation along γ are called Jacobi fields along γ. The Jacobi endomorphism
along γ (or V ) is the linear map X ∈ TmM → ξ = JV (X) ∈ TmM defined
by demanding that the Jacobi field with Cauchy data (X, 0) and the one
with Cauchy data (0, ξ) coincide at t = 1.

Remark 2 The linear map, which associates to each vector ξ ∈ TmM the
vector of Tγ(1)M equal to the value at t = 1 of the Jacobi field with Cauchy
data (0, ξ), is nothing but the map d(expm)(V ) : TmM → Tγ(1)M . It is an
isomorphism if and only if the geodesic γ contains no conjugate point, as
is well-known [CE75]. So, the latter condition on γ (or else, on (m, V )) is
exactly the one under which the Jacobi endomorphism JV may be defined.

Let us compute the expression of JV (X). The Jacobi equation along the
geodesic γ reads:

(3)
∇2J

dt2
+ Rγ̇(t)(J) = 0 ,

where γ̇ = dγ
dt

and RU (ξ) = Rp(ξ, U)U whenever p ∈ M, (U, ξ) ∈
(
TpM

)2
,

setting Rp for the Riemann tensor at p, here with the sign convention given
by: Rp(ξ, U) =

[
∇ξ,∇U

]
−∇[ξ,U ] [CE75, Kli82]. For U 6= 0, the endomor-

phism RU of TpM is symmetric and maps U⊥ to itself. It is called the
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curvature operator along the vector U , and Rγ̇(t), the curvature operator
along the geodesic γ. From now on, we assume that M is positively curved
Riemannian locally symmetric.

Positive curvature implies that the eigenvalues of the curvature operator
along any non zero vector U ∈ TpM, restricted to U⊥, are positive. The
square root operator

√
RU : TpM → TpM is thus a well-defined symmetric

endomorphism. Moreover, by local symmetry, the curvature operator is
parallel along any geodesic, hence so is its square root. If M is simply
connected, it must be a symmetric space (Cartan’s theorem) [CE75, KN63,
KN69, Hel78] and each cut point must be a conjugate point [Cri62, Kar].
Furthermore, all the geodesics are simply closed of constant length [Cha70,
Cha72, Kar], a length which we take equal to π with no loss of generality.
Now, for each p ∈ M and non zero vector U ∈ TpM , the eigenvalues of the
operator

√
RU , restricted to U⊥, are equal to |U | or to 2|U | [Cha70, Cha72,

Hel78, Kar]. Setting E1(U), E2(U), for the corresponding eigenspaces and
E0(U) = RU , we have the orthogonal decomposition:

(4) ∀p ∈ M, ∀U ∈ TpM \ {0}, TpM = E0(U) ⊕ E1(U) ⊕ E2(U).

Besides, if n = dimM and d = dimE2(U), then d+1 must divide n [Cha70,
Cha72] and be equal to one of the following values: d = n − 1 when M =
S

n[4], or d = 1 when M = CP k, or d = 3 when M = HP k, or d = 7 when
M = OP 2 [Car26, Car27, Hel78, Kar]. Here, with our normalization (length
of simple closed geodesics equal to π), each of these spaces is understood
to have the appropriate sectional curvature (holomorphic, quaternionic or
octonionic) equal to 4.

Finally, if M is not simply connected, the preceding properties hold
for its universal covering space Π : M̃ → M equipped with the pulled-
back Riemannian metric. Since the covering map Π is a local isometry, the
spectral properties of the symmetric endomorphism

√
RU : TM → TM

and the related eigenspaces decomposition (4) remain valid on M . In other
words, the topology of M is inessential for the calculation of the Jacobi
endomorphism, hence for that of the c-curvature as well.

Using the splitting (4) with (p, U) =
(
γ(t), γ̇(t)

)
, for each t ∈ [0, 1], it is

well-known [Bes78, p.82] that the Jacobi field J along the geodesic γ deter-
mined by the Cauchy data (X, ξ) ∈ (TmM)2 has the following expression:

(5) J(t) = X0(t) + tξ0(t)

+ cos(t|V |) X1(t) +
sin(t|V |)

|V | ξ1(t)

+ cos(2t|V |) X2(t) +
sin(2t|V |)

2|V | ξ2(t),

where we have denoted by t 7→ v(t) the parallel vector field along γ equal
to v ∈ TmM at t = 0. Indeed, one readily checks that J(t), given by (5),
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satisfies (3) and that the Cauchy data
(
J(0), ∇J

dt
(0)

)
coincide with (X, ξ).

Here, Remark 2 and our assumption on V yield the important bound:

(6) 2|V | < π .

From (5) and (6), we infer that the Jacobi endomorphism reads:

JV (X) = X0 + (|V | cot |V |)X1 + (2|V | cot 2|V |)X2,

for every X ∈ TmM , with Xi ∈ Ei(V ), i = 0, 1, 2. Note that, if X1 = 0 (resp.
X2 = 0), this is formally the expression of the Jacobi endomorphism of S

n[1]
(resp. S

n[4]). Using the identity 2 cot 2r = cot r − tan r (with r = |V |), we
can rewrite the right-hand side of the preceding equation as:

JV (X) = X + (|V | cot |V | − 1)(X − X0) − (|V | tan |V |)X2.

Taking the scalar product with X, we obtain our first expression of the
Jacobi quadratic form, namely:

(7)
〈
JV (X), X

〉
= |X|2+(|V | cot |V |−1)(|X|2−|X0|2)−(|V | tan |V |)|X2|2.

Recalling (2) and anticipating the calculation of the c-curvature, we face a
difficulty: if X 6= 0, the factors |Xi|2 appearing on the right-hand side of (7)
depend on X and V ; for fixed X 6= 0, how can we differentiate them with
respect to V ? The trick is to reverse the roles of X and V by considering
the 2 × 2 system:

|V |2|X1|2 + |V |2|X2|2 = |V |2|X|2 − |V |2|X0|2,
|V |2|X1|2 + 4|V |2|X2|2 =

∣∣√RV (X)
∣∣2,

and by observing that the right-hand sides are symmetric with respect to X

and V . Indeed, on the one hand, from the very definition of X0, we derive the
equality |V |2|X0|2 = 〈X, V 〉2. On the other hand, from the symmetries of the

Riemann tensor, we have 〈RV (X), X〉 ≡ 〈RX(V ), V 〉, or else,
∣∣√RV (X)

∣∣2 ≡∣∣√RX(V )
∣∣2. In particular, we infer that

|V |2|X2|2 ≡ |X|2|V2|2,

where V2 ∈ E2(X) is given by the decomposition (4) arising from X. Thanks
to Remark 1, we can plug in (7) the resulting expression of |X2|2, as well as
that of |X0|2 just noted, getting:

(8)
〈
JV (X), X

〉
= 〈X, V 〉2

(
1 − |V | cot |V |

|V |2
)

+ |X|2|V | cot |V |

− tan |V |
|V | |X|2|V2|2.

This is the expression of the Jacobi quadratic form which we will work with.
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Remark 3 If we let V2 = 0 (resp. V1 = 0) in (8), we obtain formally
the expression of the Jacobi quadratic form of S

n[1] (resp. S
n[4]). This is

straightforward to see for V2 = 0 (compare with [Loe11]) while, for V1 = 0,
it follows at once from the identity cot r − tan r = 2 cot 2r (with r = |V |).

2.2 Step 2: c-curvature calculation

We are ready to calculate C(m, V )(X, Y ). We only have to do it when the
length of V lies in

(
0, π

2

)
since, if V = 0, we are done by Remark 1, while

the bound |V | < π
2 comes from (6). Recalling Definition 1 and (2), we

take X 6= 0 with no loss of generality, replace V by V + τY in (8), and
differentiate the resulting equation twice with respect to τ at τ = 0. After
changing sign and using Remark 3 (with V2 = 0), we obtain:

(9) C(m, V )(X, Y ) = CSn[1](m, V )(X,Y )

+ |X|2 ∂2

∂τ2

(
tan |V + τY |
|V + τY | |V2 + τY2|2

)

τ=0

,

where CSn[1](m, V )(X, Y ) stands for the formal expression of the c-curvature
which would arise on S

n[1] [DG10, p.106]. We defer the proof of (1) for
constant curvature spheres to Section 3 and, as done in Proposition 1, we
take it for granted in the sequel of this section.

2.3 Step 3: proof of the lower bound (1)

Suppose that we can prove the inequality:

(10)
∂2

∂τ2

(
tan |V + τY |
|V + τY | |V2 + τY2|2

)

τ=0

> 0.

If so, the lower bound (1) follows from (9) since, by assumption, it holds for
CSn[1](m, V )(X, Y ). We are thus left with proving (10). A tedious calculation
yields:

∂2

∂τ2

(
tan |V + τY |
|V + τY | |V2 + τY2|2

)

τ=0

= 2|Y2|2 f(r)

+ 4〈v2, Y2〉〈v, Y 〉 g(r) + |v2|2〈v, Y 〉2 h(r) + |v2|2|Y |2 g(r),

with:

f(r) =
tan r

r
, g(r) =

1

cos2 r
− f(r), h(r) =

−3

cos2 r
+ 3f(r) +

2r tan r

cos2 r
.

The functions f, g, h, are continuous on r ∈
[
0,

π

2

)
, respectively equal to

1, 0, 0 at r = 0, and one can readily check the lower bounds:

∀r ∈
[
0,

π

2

)
, f(r) > 1 and g(r) > 0.
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The lower bound on g combined with the Cauchy–Schwarz inequality applied
to 〈v2, Y2〉, yields:

∂2

∂τ2

(
tan |V + τY |
|V + τY | |V2 + τY2|2

)

τ=0

> 2|Y2|2 f(r)

− 4|Y2||v2|
∣∣〈v, Y 〉

∣∣ g(r) + |v2|2〈v, Y 〉2 h(r).

Let us view the right-hand side of that inequality as a quadratic form Q

in the two variables |Y2| and |v2|
∣∣〈v, Y 〉

∣∣. The lower bound on f implies
the desired non negativity of Q, provided we can prove that the reduced
discriminant of Q, equal to D(r) = 4g2(r) − 2f(r)h(r), satisfies D < 0 on

r ∈
(
0,

π

2

)
. Calculation yields:

D(r) = − 2E(r)

r2 cos3 r
with E(r) = cos r(sin r)2 + r sin r − 2r2 cos r.

So the proof boils down to checking the inequality E(r) > 0 on (0, π
2 ). From

a technical lemma of [KM] (used to prove that (APCC) holds on S
n[1]),

according to which: sin2 r+r sin r−r2(1+cos r) > 0 on (0, π), we infer that

E(r) > r2 cos r(1 − cos r)
(tan r

r
− 1

)
for every r ∈

(
0,

π

2

)
. The right-hand

side of this inequality is clearly positive on (0, π
2 ), so we are done.

Our proof of Proposition 1 implies that the conditions (A3) and (APCC)
hold on any positively curved Riemannian locally symmetric space, since
they are known to hold on S

n[1] [Loe11, DG10, FR09, KM].

3 The case of constant curvature spheres

Let us turn to the proof of

Proposition 2 Every constant curvature sphere is positively c-curved.

Before giving the proof itself, let us reduce it to the curvature 1 case. For
each real κ > 0, we set S

n[κ], 〈., .〉κ, |.|κ, dκ, Cκ(m, V )(X, Y ), respectively
for the sphere of curvature κ, its Riemannian metric, norm and distance
function, and its c-curvature at (m, V, X, Y ) with V satisfying:

(11)
√

κ |V |κ ≡ |V |1 < π .

We further denote by Bκ(m, V, X, Y ) the expression A2(m, V, x, y)|X|2|Y |2
which occurs in the right-hand side of (1) when calculated on S

n[κ]. Note that
the Levi–Civita connection of S

n[κ] is independent of the value of κ > 0,

hence so is the exponential map. Using this remark combined with the
identity d1 ≡ √

κ dκ, we infer from Definition 1 the scaling relation:

C1(m, V )(X, Y ) ≡ κ Cκ(m, V )(X, Y ).
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Besides, we readily get the pinching:

κp Bκ(m, V, X, Y ) > B1(m, V, X, Y ) > κq Bκ(m, V, X, Y ),

with (p, q) = (3, 2) (resp. (p, q) = (2, 3)) if κ > 1 (resp. if κ ∈ (0, 1)).
Combining the pinching with the scaling, we conclude that, for each κ 6= 1 :

(i) if (1) holds on S
n[1] with the constant σ1, it must hold on S

n[κ] with
the constant κq−1σ1 ;

(ii) if (1) holds on S
n[κ] with the constant σκ, it must hold on S

n[1] with
the constant κ1−pσκ,

with (p, q) given as above. So we have, indeed, reduced the proof of Propo-
sition 2 to the curvature 1 case.

In [DG], the condition (PCC) was shown to hold on S
2[1]; it remains to

be proven only in higher dimension. To do so, let us revisit the proof of the
(APCC) condition proposed for S

n[1] in the last section of [KM], focussing
on its Step 1, where the calculation of CSn[1](m, V )(X, Y ) is reduced to the
2-dimensional case. Given (m, V ) ∈ TS

n satisfying (11), we assume with no
loss of generality that V,X and Y do not vanish and set, for short:

r = |V |, v =
V

r
, x =

X

|X| , y =
Y

|Y | .

If v is parallel to y, it was shown in [KM] that:

CSn[1](m, V )(X, Y ) = 2 c3(r)
(
1 − 〈x, v〉2

)
|X|2|Y |2,

where c3(r) =
1 − r cot r

sin2 r
is the function so denoted, and shown bounded

below by 1
3 on [0, π), in [FR09, p.1701]. In that case, we infer that (1) holds

for CSn[1](m, V )(X, Y ) with σ =
2

3(1 + π2)
. If v is not parallel to y, setting

p for the orthogonal projection of TmS
n on the 2-plane spanned at m by

(v, y), it was shown in [KM] that:

CSn[1](m, V )(X, Y ) = CS2[1](m, V )(pX, Y )

+
(
2 c3(r)〈y, v〉2 + c5(r)

(
1 − 〈y, v〉2

))
|X − pX|2|Y |2,

where c5(r) =
1

sin2 r
− cot r

r
is the function so denoted, and shown bounded

below by 2
3 on [0, π), in [FR09, p.1701]. Therefore, we obtain:

(12) CSn[1](m, V )(X, Y ) > CS2[1](m, V )(pX, Y ) +
2

3
|X − pX|2|Y |2.
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If pX = 0, we get at once (1) with σ =
2

3(1 + 2π2)
. If pX 6= 0, we recall

from [DG] the existence of a constant α > 0 such that:

CS2[1](m, V )(pX,Y ) > αB1(m, V, pX, Y ),

and note the obvious lower bound:

2

3
|X − pX|2|Y |2 >

2

9
|X − pX|2|Y |2 +

2

9π2
|X − pX|2|Y |2|V |2

+
2

9π2
|X − pX|2

(
|Y |2|V |2 − 〈Y, V 〉2

)
.

Plugging these inequalities in (12) yields (1) with σ = min
(
α,

2

9π2

)
. Alto-

gether, the lower bound (1) thus holds for CSn[1](m, V )(X, Y ) with the latter
choice of σ, uniformly with respect to (m, V, X, Y ) with |V | < π.

4 Conclusion

We would like to conclude this note by giving its full scope to Theorem
1. We require a more general definition of the c-curvature used in [FRV].
Recalling Remark 2, it can be stated as follows:

Definition 2 (extended c-curvature) Let M be a complete Riemannian
manifold and (m, V ) ∈ TM such that the geodesic t ∈ [0, 1] → expm(tV ) ∈
M contains no conjugate point. Set JV for the corresponding Jacobi endo-
morphism of TmM . For each (X, Y ) ∈

(
TmM

)2
, the extended c-curvature

at (m, V, X, Y ) is given by: C(m, V )(X, Y ) = − ∂2

∂τ2

〈
JV +τY (X), X

〉∣∣∣
τ=0

.

The difference between our two definitions of the c-curvature lies in the
assumption made on (m, V ), which is stronger in Definition 1. Under the
assumption of Definition 1, from (2), we know that C(m, V ) ≡ C(m, V ). In
particular, back to M positively curved Riemannian locally symmetric, the
two definitions coincide anytime M is simply connected because, then, each
cut point is a conjugate point [Cri62]. But Definition 2 is more general than
Definition 1 if M has non trivial topology. In that case, the proof given in
this note shows that the lower bound (1) remains valid for C(m, V )(X, Y ).
In other words, Theorem 1 holds for the extended c-curvature.

Finally, the result of this paper prompts us toward a stability question
in the spirit of the Trudinger’s conjecture mentioned in the introduction,
namely: is every closed positively curved Riemannian manifold, positively
c-curved, provided the gradient of its Riemann tensor is small enough in C1

norm ? This is a difficult question, settled (affirmatively) only on S
2 [DG].
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