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Abstract

The mean field configuration interaction (MFCI) method has been developped in

recent years both for electrons (EMFCI) and molecular vibrations (VMFCI). In the
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Introduction

The mean field configuration interaction (MFCI) method has been developed originally

by Cassam-Chenäı and Liévin for molecular vibrations and was called vibrational MFCI

(VMFCI) [1]. It has proved extremely powerful and flexible to solve the molecular, vi-

brational, stationary Schrödinger equation [2–4]. This has encouraged one of the authors

to develop a version of the MFCI method for fermions. The latter has been imple-

mented for molecular electrons in the computer code TONTO and called the “electronic

MFCI” (EMFCI) method [5–8]. In contrast with the VMFCI method implemented in

the computer code CONVIV [9,10] in full generality, the EMFCI method implemented

in TONTO is restricted at present to the case where the electrons are grouped in pairs,

that is to say, are represented by antisymmetrized products of geminals. This particular

case of EMFCI is referred to as the geminal MFCI (GMFCI) method.

Both the VMFCI and the EMFCI have been presented in seminars and at international

conferences, in particular at the “international meeting on Mathematical Methods for

Ab Initio Quantum Chemistry” held in Nice, annually since 2005. We have gathered

in this article, presented in the form of a “ frequently asked questions” (FAQ) text,

many of the questions rised during discussions having taken place at these occasions, or

elsewhere. The purpose of the article is to clarify certain points addressed too succinctly

in previous publications and to present some subtleties of the MFCI method, or of its

computer implementation, never mentioned before. Some questions actually go beyond

the mere scope of the MFCI method and touch upon problems inherent in variational

methods, in general.

The article is organized as follows: We begin with a brief account of the VMFCI method,

in order to make the article accessible to non-specialists. The EMFCI method is not

explicitly formulated in this first part which focuses on the VMFCI method, however

the main steps follow those of the VMFCI. Then, we begin the faq section itself. In

one question, differences between the VMFCI and EMFCI methods and algorithms are

outlined.

Part II of this work will be mainly devoted to the EMFCI method.
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The VMFCI method explained

The VMFCI method consists in performing vibrational configuration interactions of some

degrees of freedom (DOFs) in the mean field of the other. The aim of the method is to

keep the finite basis sets used in successive vibrational configuration interaction (VCI)

within manageable sizes, by contracting groups of DOFs together, as in the traditional

contraction method [11–14]. However, the power of the method comes from the mean

field term added to the group Hamiltonians not present in the traditional approach.

Partitions of DOFs

A VMFCI step starts with a partition, P , of the nvib vibrational degrees of freedom into

nP subsets :

P = (I1, I2, · · · , InP
) = ({i11, i12, · · · , i1k1}, {i

2
1, i

2
2, · · · , i2k2}, · · · , {i

nP
1 , inP

2 , · · · , inP

knP
})

Using partition P the vibrational Hamiltonian can be written as :

Hvib = h0 +
nP∑

γ1=1

hγ1(Iγ1)

+
∑

1≤γ1<γ2≤nP

hγ1,γ2(Iγ1)hγ1,γ2(Iγ2)

+ · · ·+ h1,2,··· ,nP
(I1)h1,2,··· ,nP

(I2) · · ·h1,2,··· ,nP
(InP

)

where hγ1,γ2,...,γk(Iγl) denotes a vibrational operator that only depends upon operators

acting on DOFs in subsets Iγl .

Then, one defines a possibly coarser partition, Q = (J1, J2, · · · , JnQ
), satisfying nQ ≤ nP

and ∀γ ∈ {1, · · · , nP}, ∃α ∈ {1, · · · , nQ} such that Iγ ⊆ Jα.

For such a step, we call “contractions” the subsets Jα, and “components of contraction

Jα” the subsets Iγ such that Iγ ⊆ Jα. When several VMFCI steps are performed, the

components of one step are the contractions of the previous step. Note that the case

Q = P is allowed. Iterating the same partition until self-consistency lead to vibrational

self-consistent field configuration interaction (VSCFCI) methods, which generalize the
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well-known VSCF method [15,16]. Such a generalization has been considered by Bowman

and Gazdi [17] but not in the frame of an iterated VCI approach.

Product basis sets

Let us consider a given contraction Jα that we will call “active”. The other contractions

are called “spectators”. We assume that contraction Jα has β components :

Jα= Iγ1 ∪ Iγ2 ∪ · · · ∪ Iγβ
=
{
iγ11 , · · · , iγ1kγ1 , · · · , i

γβ
1 , · · · , i

γβ
kγβ

}

=
{
jα1 , · · · , jαlα

}
with lα = kγ1 + · · ·+ kγβ .

Having a basis set {φmγ

Iγ
}mγ∈{1,...,dγ}, spanning an Hilbert subspace of dimension, say

dγ, for each component Iγ, we build for contraction Jα, a so-called “product basis set”,

{ΦMα

Jα
}
Mα∈{1,...,Dα}, spanning an Hilbert subspace of dimension Dα, by constructing prod-

uct functions of the form:

ΦMα

Jα
=

⊗

Iγ⊆Jα
φ
mγ

Iγ
(1)

or more explicitly, writing variable dependencies:

ΦMα

Jα
(qiγ11 , · · · , qiγ1kγ1 , · · · , qi

γβ
1
, · · · , q

i
γβ

kγβ

)=ΦMα

Jα
(qjα1 , · · · , qjαlα )

=
∏

Iγ⊆Jα
φ
mγ

Iγ
(qiγ1 , · · · , qiγkγ )

with Mα = (mγ1 , · · · ,mγβ).

In CONVIV, the process is initialized with an basis set of modals, that is to say, functions

of a single vibrational degree of freedom, but this constraint can be walked around if

groups of DOFs are contracted from the start. The modal basis available at present in

CONVIV either are built from eigenfunctions of one dimensional Schrödinger equations

with various potential such as a harmonic potential (with arbitrary center and frequency),

a Morse potential [18], a Trigonometric Pösch-Teller (TPT) potential [19], a Kratzer

potential [20], or are Chebychev polynomials.

By convention, the eigenstates are numbered in increasing order with natural numbers

starting with 0, so the vector index, Mα = (0, ..., 0), always corresponds to product of
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ground state functions.

The dimension of the basis set for the contraction Jα can be different from the product of

dimensions of its component’s basis sets because of possible basis function truncations,

usually performed according to some energy criteria (vide infra).

Mean field Hamiltonian

For the active contraction Jα, we define a partial Hamiltonian, Hα, by grouping all the

terms in Hvib involving the DOFs in components Iγl of Jα:

Hα = h0 +
∑

γ1
such that

Iγ1⊆Jα

hγ1(Iγ1) +
∑

γ1<γ2
such that

Iγ1 ,Iγ2⊆Jα

hγ1,γ2(Iγ1)hγ1,γ2(Iγ2)

+ · · ·+
∑

γ1<···<γβ

such that

Iγ1 ,··· ,Iγβ⊆Jα

hγ1,··· ,γβ(Iγ1) · · ·hγ1,··· ,γβ(Iγβ) (2)

In contrast with the original contraction method, a mean field term accounting for the

average effect of all the spectator modes, is added to this partial Hamiltonian:

H̃α = Hα + 〈
⊗

Iγ*Jα

φ0
Iγ
|Hvib −Hα|

⊗

Iγ*Jα

φ0
Iγ
〉 (3)

A VMFCI calculation consists in performing a VCI [21] for the mean field Hamiltonians,

Eq.(3), in the product basis sets, Eq. (1). In CONVIV, at any one step, a VMFCI is

performed for each contraction of the Q-partition.

Thereby, we obtain new basis sets {φmα

Jα
}mα∈{1,...,Dα} of dimension Dα made of eigenvec-

tors of the mean field Hamiltonians to construct the product basis sets of the next step.

Their associated eigenvalues can be used to truncate the product basis sets according

to energy criteria: either the individual component basis functions are selected if their

associated eigenvalue is less than a given threshold, or a product function is selected if

the sum of its component eigenvalues is less than a given threshold. Both criteria can be

applied jointly.

Note that in CONVIV, it is possible to control the number of eigenpairs calculated by

the diagonalizer when solving the mean field Hamiltonian eigenvalue problem. So, in
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fact, the dimension of the new basis set for contraction Jα, can be less than Dα.

Question 1: Could the VMFCI method, although termed “vibrational”, be

applied to the Hamiltonian of any system made of distinguishable degrees

of freedom (DOFs), such as the molecular Hamiltonian of nuclear motion,

including rotational and possibly translational DOFs?

Yes, in fact the VMFCI method, and the computer code CONVIV, can be applied to any

set of distinguishable degrees of freedom (DOFs). Test calculations, yet unpublished, with

a pseudo-rotation internal motion DOF or with rotational motion of the whole molecule

DOFs coupled with the vibrational DOFs have, actually, already been performed with

the code CONVIV.

Question 2: If the answer to question 1 is yes, why not employing the VMFCI

method for the complete nuclear motion Hamiltonian in Cartesian coordi-

nates, which assumes a particularly simple and universal form?

In principle traditional quantum mechanics does not depend upon its representation. So,

it is tempting to use the simple Cartesian Hamiltonian. Test calculations can easily be

carried out with CONVIV. However, the results are disastrous, even if a unitary trans-

formation over the Cartesian DOFs is performed to make appear rectilinear vibrational,

rotational and translational DOFs, as in the standard normal coordinate approach. Rec-

tilinear rotational DOFs are absolutely not adapted to describe the proper rotational

motion: the kinetic part of the Cartesian Hamiltonian is very different from that of a

rigid rotator Hamiltonian, for example, and the potential expansion in terms of powers

of these DOFs converges too poorly to produce a spectrum that resembles a rotational

spectrum, when it is truncated. Furthermore, when using the MFCI method, the fact

that the rotational DOFs are poorly described, affects the vibrational DOFs that are

optimized in the mean field of the latter.
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Question 3: Then, can one retrieve the form of the exact (that is non trun-

cated) potential involving the rectilinear rotational coordinates from the

back-transformation of the Hamiltonian in the Eckart frame to the Cartesian

Hamiltonian in the laboratory frame, and deal with this exact potential?

The problem is that, in this potential, the rectilinear rotational coordinates will be

coupled to the other rectilinear coordinates in a non separable manner, (that is to say,

it cannot be cast in the form of a finite sum of products of one-DOF factors). A priori ,

this will not favor an effective use of the MFCI approach.

Question 4: The variational principle insures that the energy can only de-

crease at each VMFCI calculation. This is provided, one performs a VMFCI

calculation for a single active contraction per step. However, in CONVIV,

one performs a VMFCI calculations for all the contractions of a given parti-

tion at the same step, using spectator ground states functions of the previous

step. Is it to speed up the convergence?

The answer is yes, the variational principle is sacrified to speed up convergency in the

CONVIV computer code. So far, we have noticed only one occurence of zero point energy

increase instead of decrease in successive CONVIV calculation steps. As can be seen

in Tab. 1, this increase was only by a small amount, and the convergence was again

satisfactory at the next step.

However, the situation is different in the case of the EMFCI method, where it is often

observed that after a few iterations, the increase of the ZPEs of different electron groups

block the convergence of the calculation, when the EMFCI algorithm is implemented

in the CONVIV way. This is because the optimized ground state Ψ
(1)
0 of, say electron

group number 1, affects the ground state of group 2, Ψ
(2)
0 , not only by the mean field it

produces, but also by modifying its effective contribution to the antisymmetric product

function of the total ground state, Ψ
(1)
0 ∧Ψ

(2)
0 . (We use the “exterior” or “wedge product”

notation [22].)

Let us consider a not very realistic, yet instructive, case example. Suppose that the exact
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wave function of a 4-electron system is, ψ1 ∧ ψ̄1 ∧ ψ2∧ψ̄3+ψ3∧ψ̄2√
2

, and that we start from

an SCF guess of the form ψ1 ∧ ψ̄1 ∧ ψ2 ∧ ψ̄2 in a GMFCI calculation. ψ1, ψ2 and ψ3

are 3 orthonormal orbitals spanning our basis set. At step 0, if one starts with group 1

active, using the mean field associated to ψ2 ∧ ψ̄2, one will find a solution of the form,

Ψ
(1)
0 = a11ψ1∧ ψ̄1+a33ψ3∧ ψ̄3+a13

ψ1∧ψ̄3+ψ3∧ψ̄1√
2

, (geminal basis functions containing ψ2 or

ψ̄2, are not considered with such a spectator geminal). Whereas, if one starts with group

2 active, using the mean field associated to ψ1 ∧ ψ̄1, one will obtain, Ψ
(2)
0 = ψ2∧ψ̄3+ψ3∧ψ̄2√

2
.

With the algorithm currently implemented in TONTO, both active groups are considered

at step 0. The one giving the lowest ground state energy is retained and its new ground

state is combined with the old spectator ground state that has served to build the mean

field Hamiltonian. So, the exact solution is found immediately, since it corresponds to

the VMFCI calculation with group 2 active. With an algorithm à la CONVIV one would

combine the new ground states of both groups:

(
a11ψ1 ∧ ψ̄1 + a33ψ3 ∧ ψ̄3 + a13

ψ1 ∧ ψ̄3 + ψ3 ∧ ψ̄1√
2

)
∧ ψ2 ∧ ψ̄3 + ψ3 ∧ ψ̄2√

2
=

a11ψ1 ∧ ψ̄1 ∧
ψ2 ∧ ψ̄3 + ψ3 ∧ ψ̄2√

2
− a13ψ3 ∧ ψ̄3 ∧

ψ1 ∧ ψ̄2 + ψ2 ∧ ψ̄1

2
, (4)

which is not a variational procedure and which does not give the exact solution.

This sort of negative “interference” between wave functions obtained by separate GMFCI

calculations for different groups is not possible for a VMFCI wave function, because its

tensor product components cannot mix in the same way. Still, the variational principle

is lost if the mean field averaging is performed from step-(n-1), approximate, spectator,

ground states for all contractions of the step-n partition, and this might result in a ZPE

increase. However, as a matter of fact, this has never been an issue, when using CONVIV,

so far.

Question 5: Can one focus on a given spectral window with VMFCI?

This is a general issue for any variational method. The answer is a priori no for a given

Hamiltonian operator [24], because if there are holes in the lower part of the computed

spectrum, the basis functions designed to describe the eigenfunctions of the spectral win-

dow of interest, may indeed serve to describe the missing eigenfunctions at the expense
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of the eigenfunctions of interest. An example of such a phenomenon will be provided

in the answer to Question 10. To circumvent this limitation, one can think of filtering

techniques, which consist in transforming the Hamiltonian, H → f(H), by applying a

function, f , possibly parametrized by the energy bounds of the window of interest, which

carries the selected levels at the bottom of the spectrum of the transformed Hamiltonian,

(see Wyatt and coworkers for references and applications to vibrational spectroscopy

[25,26]).

However, if the excited states of interest correspond to excitations of a given set, S, of

DOFs, then the flexibility of the VMFCI method can be profitably used. One can for

example avoid to contract the DOFs in S with the DOFs not in S, and then truncate

drastically the basis sets of contractions containing only DOFs not in S. This may

produce holes in the spectrum, but in general the latter will not affect the excited states

of interest. Of course, there should be no resonnance between DOFs in S and DOFs not

in S below the targeted states.

Question 6: Can one average over a different spectator state than the ground

state to focus on a particular excited state?

Yes, but only at the last step of a calculation with CONVIV. Otherwise, if one more

iteration is performed, the new spectator states to be used in the computation of the mean

field correction may not have the right physical meaning. So, they will not be suitable

for the purpose of building mean field Hamiltonians. For example, let us consider a 3

DOF system. Suppose that the targeted state is the first excited state in DOF number

1. If, at step n, one averages the Hamiltonian for DOF number 3 over the first excited

state of DOF number 1 and the ground state of DOF number 2, the new ground state

so-obtained for DOF number 3 will not be a proper ground state for this DOF, because

the true ground state would correspond to a ground state product mean field. Then, at

step-(n+ 1), if one uses this pseudo-ground state for DOF 3, to compute the mean field

Hamiltonian for DOF 1 or DOF 2, an unphysical spectrum will result.
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Question 7: The CONVIV code permits to choose between many types of

basis functions, and most types depend upon one or more free parameters.

How to select the type of basis set and adjust the parameters?

It is important to note that there is no universal criterium to decide whether a basis

set is better than another. For a 1-D problem, it seems natural to choose a basis type

corresponding to a model potential that ressembles the exact one. For example, if the

shape of the exact potential is close to that of a Morse potential, it is tempting to use

Morse basis functions. Then, it is likely that, this choice will be close to optimal in terms

of speed of convergence with respect to the number of basis functions. However, if the

aim of the computation is not the best description of a large part of the lower spectrum

with a finite basis set of as small a size as possible, but is, instead, a very accurate

description of a few lower levels, this choice may not be appropriate, since there are only

a finite number of bound states for the Morse potential. It might be more advantageous

to opt for a basis set of harmonic functions with well-chosen center and frequency, for

example. For small basis set sizes, arguably, it will be less accurate than the Morse basis

of the same size. However, it will be possible, in principle, to add as many basis functions

as required to achieve the accuracy goal. Other criteria, such as the computational cost

of calculating Hamiltonian matrix elements could be considered.

Regarding the optimization of the free parameters, several strategies can be considered.

One can minimize the difference between selected eigenvalues of the 1-D Hamiltonian cor-

responding to a 1-D section of the PES and those corresponding to the model potential.

For example, if we consider that, the best frequency for a harmonic modal basis, is the

one for which the largest number of eigenvalues are converged within the cm−1 accuracy

given a fixed number of basis functions, one find that the best harmonic modal basis of

50 functions for a Morse potential with parameters, D = 0.181077 au, a = 0.0242094161

au, has a frequency of about 0.4 times the harmonic frequency, ν0, of the Morse potential

second order Taylor expansion [27]. More precisely, with an harmonic modal frequency

equal to ν0, the first 10 levels are within the cm−1 accuracy of the exact Morse eigenval-

ues, whereas with a modal frequency of 0.4ν0, four more levels are converged.

Alternatively, one can optimize the parameters by fitting the PES to a model potential

below an energy threshold corresponding to the spectral region of interest. Examples will
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be provided in the following questions. For a given energy threshold, say λ, fitting the

curves on a large grid of points covering the energy region below λ, or minimizing the

eigenvalues discrepancies below λ, can result in very different sets of parameters. Again,

which parameters are the best, will depend on the aim of the calculation to be performed

using the modal basis set.

Question 8: Should one use 1-D sections of the original PES or mean field

1-D potential curves to optimize modal basis sets?

The problem of choosing modal basis sets is more complicated for a multidimensional

system, because the optimal modal basis for a 1-D section of the potential may not be

optimal to describe the couplings with the other DOFs. In a VMFCI context, the mean

field potential of a given DOF, which takes into account the average effect of the inter-

mode couplings, is a priori preferable to the corresponding 1-D section of the PES, in

view of solving the multidimensional problem. As a matter of fact, it has been shown

that the anharmonicity due to inter-mode couplings, not included in 1-D section of the

original potential, usually dominates the anharmonicity due to intra-mode couplings

[28]. Furthermore, Table II of [3] shows that 1-D sections of the original potential give

eigenvalues worse than those of a simple harmonic approximation in half of the cases,

and worse than those obtained from mean field potentials in all cases.

Mean field potentials for modal basis optimizations depend upon the choice of specta-

tor ground state basis functions. Harmonic basis functions corresponding to a quadratic

approximation of the PES, though very simple, are in general good enough to provide

qualitatively correct mean field 1-D potential without the need to perform a single VM-

FCI calculation. In a few cases, such as mode ν3 in Table II of [3], a better approximation

of ground state spectator modes would be required. This could be the solution of a step

0 MFCI calculation, or, possibly, the ground state product of better model potentials for

spectator DOFs.

However, a posteriori, the differences between the low-lying eigenvalues obtained from

optimized modal basis with or without mean field, have been found unsignificant in many

cases. For example, in Fig. 1, the differences between the two potential curves with and

without mean field correction, though significant, are much smaller than the differences
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of model potentials in Fig. 3, which themselves have little influence on the lowest levels

obtained from VCI calculations, as seen from Tab. 2.

Other interesting considerations regarding the optimization of modal functions for a

multidimensional Hamiltonian can be found in [31].

Question 9: How to optimize the modal basis set of an anisotropic degenerate

mode?

When the symmetry group of a molecule is non Abelian, some vibrational modes can

be degenerate, say d-times degenerate, and the d-dimensional section of the PES, when

the other DOFs are at the equilibrium geometry, can be anisotropic. This is the case for

example of the ν2-mode of methane illustrated in Fig. 2 (upper panel).

However, to perform VMFCI calculations with finite modal basis that do not break molec-

ular symmetry, the parameters of the modal basis must be the same in the directions of

all the d-degenerate coordinates. So, it is a priori important to choose parameters that

would give basis functions appropriate in any direction of the d-dimensional potential.

For the ν2-mode of methane, the influence of potential anisotropy on the optimal fre-

quency of a harmonic basis set, is small enough to be negligible, see lower panel of Fig.

2. The optimal frequency was determined by mean square fitting the harmonic poten-

tial to the potential curve in direction θ, (see Fig. 2, upper panel), on a grid of points

below an energy of 22000 cm−1 . The closer to equilibrium, the less the anisotropy, so

one expects a larger effect at higher energy. However, even with a larger effect on the

optimal frequency, it is expected, as in the previous question, that the optimal frequency

variations will hardly affect the bottom of the spectrum. So, to answer the question, in

practice, one can choose any direction in the degenerate subspace, and use the optimal

frequency in that direction to construct the modal basis sets in all d-dimensions.
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Question 10: When the PES has non physical regions, as is often the case

with polynomial expansion, can one play on basis set parameters to increase

the number of basis functions having a significant weight only in the physical

domain and improve the description of the bound states?

The PES used in molecular spectroscopy are seldom global ones, having correct asymp-

totic behaviors. They are often polynomial expansion, fitted on a grid of nuclear con-

figuration points relatively close to the equilibrium geometry, or obtained by analytical

or numerical derivatives of an electronic energy expression. In particular, commercial

quantum chemistry codes now deliver quartic potential amenable to a second order per-

turbative treatment [33]. However, these PES can have spurrious oscillations, as one goes

away from equilibrium, and may even be non bounded from below, which is an issue for

variational methods.

To answer the question, let us consider the model quartic potential of Fig. 3, V (x) =

8 ∗ 10−5x2 − 1.6 ∗ 10−8x4, (in au), whose shape is close to the 1-D section of a 10th

order potential for methane [29], represented in Fig. 1. We assume that the non physical

region starts beyond the barrier in both directions. We have calculated the bound levels

of this potential by performing VCI calculations with three different harmonic modal

basis corresponding to the harmonic potentials also represented on Fig. 3. The fitted

harmonic potential has been obtained by mean square fitting a grid of points in the

dotted region of the quartic potential.

Figure 4 displays for each modal basis, the first ten VCI eigenvalues for increasing num-

bers of basis functions. For all modal basis, the pattern is similar: The levels alternate

decreasing phases with stabilizing phases. The first 9 levels stabilize first at the expected

bound state eigenvalues. Then, the levels dive in cascade, that is one after the other,

starting from the highest ones, before stabilizing again, except the two lowest ones,

which appear to dive to minus infinity. If we extrapolate the “Fitted harmonic” case,

for any level, say level n, there is an inflexion when it reaches level n − 1, then a new

stabilization at level n− 2, and so on, with successive stabilizations at levels n− 2k, as

long as, k > n
2
− 1. The highest (n = 10) level also stabilizes at level n− 2 = 8, once the

latter level has dropped.

According to the Hylleraas, Undheim, MacDonald theorem [34,35], the levels can only
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decrease as the number of basis functions increases. This is of course verified. However,

this theorem tells nothing about the pace of the decrease, which is remarkable in the

present case. The observed steps can be interpreted as follows: with a small number of

basis functions, the modal basis is too incomplete to describe the high bounded levels,

specially when the modal frequency has not been optimized: the further from the fitted

frequency, the steepest are the initial slopes. Then, as the basis set is being completed,

the bounded levels tend to converge (first stabilization area). However, increasing the

basis set size eventually adds functions having non negligible weight in the unbounded

region beyond the barrier. The description of the wave functions of the highest levels is

affected first, since they have more overlap with the newly introduced basis functions.

They tend to dive to −∞, however, when a lower level has already dived, they stabilize

to describe the missing bound level, provided it has the same parity.

So, when there are unbounded regions in the potential, adding more functions can spoil

a variational calculation. One can think of using a stiff frequency to increase the number

of basis functions having negligible weight in the unbounded region. As matter of fact,

with the stiff harmonic potential of Fig. 3, 40 basis functions can be used before the 8th

level drops, against 26 for the fitted harmonic potential. Let us analyse the performance

of these basis set with the help of Tab. 2.

For a fixed, limited number of basis functions, columns “n = 15”, the fitted harmonic

modal basis performs the best for all levels. This is somehow expected and justifies

frequency optimization. When the number of functions reaches the instability area of

the 8th level, one sees that, for all modal basis, the first four levels have converged to

the same values, and that levels 9 and 10 have both dropped in accordance with Fig. 4.

Regarding levels 5 to 8, it is clear that the fitted harmonic modal basis, whose maximum

number of basis functions is limited to 26, is inferior to the other basis. Level 5 has

converged with both the standard harmonic basis sets (corresponding to the potential

quadratic constant) and the stiff harmonic basis set. Levels 6 to 8 obtained with the 40

functions of the stiff harmonic basis are lower than those of the standard harmonic basis

limited at 29 functions. So, the stiff harmonic modal basis, which is slower to converge the

low-lying levels than the other basis, becomes interesting for the highest bounded levels.

However, it is important to note that not all the digits of these levels are converged.

For example, level 6 with 30 standard harmonic basis function is equal to 14088.745504
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cm−1 , that is to say, it is lower than all results of Tab. 2. In particular, this shows that,

for this level, a standard harmonic basis of 30 functions performs better than the stiff

harmonic basis of 40 functions.

To conclude this question, we note that, for any modal basis, the number of basis func-

tions has to be finely tuned to obtain a given level at optimal accuracy. For example,

with the stiff harmonic modal basis set, one would have to use less than 40 functions

to obtain an estimate of level 9, but more than 40 functions would be required to lower

the value of level 6 below the value obtained with 30 standard harmonic basis functions.

For a harmonic basis set (with exponential factor equal to exp(−1/2(Q/a)2)), one could

think of using the relationship, QM = sqrt(2 ∗ n + 1)/a, between the classical spatial

extension, QM , and the quantum number, n, of the level, to determine the appropriate

number of basis functions, given the location of the unphysical region to be avoided.

However, to get truely optimal numbers, one need to draw figures, such as Fig. 4, to

determine the stability area of each level. This is heavy work. So, in the end, the best

treatment is usually to fix the unphysical part of the potential, as has been done, for

example, in [36] for a quartic PES of Formic acid.
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[19] G. Pöschl, E. Z. Teller, Z. Physik, 83 (1933) 143

[20] A. Kratzer, Z. Physik 3,(1920) 289

[21] J. M. Bowman, K. Christoffel, F. Tobin,J. Phys. Chem. 83, 905-912 (1979).
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Tables

ZPE in cm−1

step type ν1 (10 bf) ν3 (220 bf) ν2 (120 bf) ν4 (680 bf)

MSP-VMFCI 9736.817797 9817.832496 9830.213859 9828.829953

MSP-VMFCI 9724.937053 9721.80854 9724.971052 9724.624952

MSP-VMFCI 9721.492681 9721.614393 9721.617023 9721.613361

MSP-VMFCI 9721.494016 9721.489747 9721.494231 9721.493759

MSP-VMFCI 9721.489335 9721.489504 9721.489515 9721.489508

MSP-VMFCI 9721.489334 9721.489328 9721.489335 9721.489334

MSP-VMFCI 9721.489327 9721.489327 9721.489327 9721.489327

VMFCI(ν1 − ν3;48000) 9704.716970 (1781 bf) 9721.489327 9721.489327

VMFCI(ν1 − ν3;22000) 9704.716970 (330 bf) 9704.716867 9704.716590

VCI(18349) 9698.841643 (52096 bf)

Table 1

ZPE convergence for a VMFCI contraction-truncation scheme in 12CH4. At step 0, the initial

harmonic oscillator (HO) product basis set had 179,520,000 functions. MSP stands for minimal

symmetry preserving, and correspond to the partitioning of the 9 DOFs into the 4 spectroscopic

modes, ν1, ν2, ν3, ν4 of degeneracy 1, 2, 3, 3 respectively. This partition is used from step 0

to 6. Then, at steps 7 and 8, the two stretching modes, ν1, and ν3, are contracted together

with truncation threshold on the sum of the product basis function energy at 48000 cm−1 and

22000 cm−1 , respectively. This amounts to 1781 (resp. 330) basis functions (bf) in the VMFCI

calculation of the stretching contraction (4 DOFs). Finally, in the last step, all DOFs are

contracted in a VCI step. The converged digits for a given, iterated, partition are in bold. The

ZPE decreases for all contractions of all partitions, except for mode 1 at step 3, where the ZPE

slightly increases before decreasing again to even lower than the ZPE of the other modes. Such

an increase is a very rare phenomenon in VMFCI calculations from our numerical experience.

The tabulated numbers were obtained with the transformed potential energy surface of Lee,

Martin and Taylor, [23], used in previous studies [1,2,9].
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Harmonic Harmonic-Fitted Harmonic-Stiff

(ω = 2776 cm−1) (ω = 2438 cm−1) (ω = 3709 cm−1)

n = 15 nmax = 29 n = 15 nmax = 26 n = 15 nmax = 40

1371.131862 1371.131862 1371.131862 1371.131862 1371.131862 1371.131862

4077.968125 4077.968125 4077.968125 4077.968125 4077.968242 4077.968125

6710.960673 6710.960668 6710.960669 6710.960668 6710.962240 6710.960668

9263.366323 9263.365816 9263.365887 9263.365816 9263.451570 9263.365816

11726.528807 11726.523475 11726.524298 11726.523476 11727.046640 11726.523475

14088.962265 14088.745990 14088.778374 14088.745601 14099.134388 14088.745557

16334.382810 16332.923383 16333.286920 16332.930070 16369.339290 16332.921818

18454.111780 18429.000686 18438.080138 18426.096817 18701.752450 18422.067618

20419.858316 19867.964685 20363.938015 19336.445001 20929.191041 18870.637502

22472.251317 20443.249132 22198.833724 20163.312838 23972.540279 19684.482474

Table 2

First levels (in cm−1) of the model potential of Fig. 3 calculated with different basis sets. The

value n = 15 is situated in the middle of the stability region for all types of basis set. The

nmax value represents the maximum number of basis functions before the instability of the

8th level appears. More digits than significant physically are provided to appreciate numerical

convergency. Bold numbers correspond to non stabilized eigenvalues according to Fig. 4. The

digits that differ from those of the lowest number of each line are italicized.
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Figures

Fig. 1. Q4z-section of Nikitin, Rey, Tyuterev PES [29] transformed to mass-weighted normal

coordinates [30] with and without mean field correction. The differences are much smaller than

those between the harmonic potentials of Fig. 3. The basis sets obtained from the latter have,

however, little influence on low-lying eigenvalues. Energy in cm−1, Q4z in au. The mean field

correction was obtained from harmonic approximations of spectator ground states.
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Fig. 2. Optimized harmonic modal basis set wave number as a function of angle θ, for the 2-D

section corresponding to the bending mode ν2, of the same methane PES as that used for Fig.

1. The sign convention for the mass-weighted normal coordinates q2a and q2b are those of Gray

and Robiette [32]. The wave number has been optimized by mean-square fitting of a grid of

23400 points below 22000 cm−1 , which corresponds to coordinate values falling in the interval

−60 au , +57 au. The effect of the anisotropy on the optimized wave number is not important

enough to influence significantly the quality of the modal basis set.
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Fig. 3. Case-example of a quartic potential unbounded from below and model harmonic poten-

tials whose eigenfunctions are used as basis functions. For each model potential, a horizontal

line represents the energy level of the highest basis function before the 8th bounded level of the

quartic potential drops in Fig. 4. This highest basis function corresponds to the nmax value of

Tab. 2. The barrier height of the quartic potential is about 21947.463 cm−1 . The fundamental

wave numbers of the harmonic, model potential are given in Tab. 2. This picture gives an idea

of how rapidly the different basis sets extend beyond the barrier.
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Fig. 4. VCI energy levels of the quartic potential of Fig. 3, as functions of basis set sizes. The

basis functions are the eigenfunctions for the model potentials of Fig. 3.
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