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Variational heuristics for the Monge problem on

compact manifolds∗

Ph. Delanoë
†

Abstract

We consider Monge’s optimal transport problem posed on compact
manifolds (possibly with boundary) for a lower semi-continuous cost
function c. When all data are smooth and the given measures, positive,
we restrict the total cost C to diffeomorphisms. If a diffeomorphism
is stationary for C, we know that it admits a potential function. If
it realizes a local minimum of C, we prove that the c-Hessian of its
potential function must be non-negative, positive if the cost function
c is non degenerate. If c is generating non-degenerate, we reduce the
existence of a local minimizer of C to that of an elliptic solution of
the Monge–Ampère equation expressing the measure transport; more-
over, the local minimizer is unique. It is global, thus solving Monge’s
problem, provided c is superdifferentiable with respect to one of its
arguments.

Introduction

The solution of Monge’s problem [16] in optimal transportation theory, with
a general cost function, has been applied to many questions in various do-
mains tentatively listed in the survey paper [11], including in cosmology [4].
The book [20] offers a modern account on the theory (see also [5, 10, 11]).

In case data are smooth, manifolds compact, measures positive, maps
one-to-one and the solution of Monge’s problem unique, the question of
the smoothness of that solution was addressed in the landmark paper [13].
In that case, restricting Monge’s problem to diffeomorphisms becomes a
natural ansatz. Doing so, the use of differential geometry and the calculus of
variations enables one to bypass the general optimal transportation approach
and figure out directly some basic features of the solution map. Such a
variational heuristics goes back to [1] and was elaborated stepwise in [9,
19, 4, 18, 7] (see also [4]). In the present note, we take a new step in that
elaboration.
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morphism, c-potential, c-Hessian positivity, c-convexity
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Specifically, working in the C∞ category1, we are given a couple of com-
pact connected diffeomorphic manifolds each equipped with a probability
volume measure, (M,µ) and (P,̟). The manifold M (resp. P ), either has
no boundary or it is the closure of a domain contained in some larger mani-
fold. We consider a domain Ω ⊂M×P such that, for each (m0, p0) ∈M×P ,
the subset ΩP

m0
=

{
p ∈ P, (m0, p) ∈ Ω

}
is a domain of full measure in (P,̟)

and similarly for ΩM
p0

=
{
m ∈M, (m, p0) ∈ Ω

}
in (M,µ); no smoothness as-

sumption bears on the boundary of Ω. We denote by Diffµ,̟(Ω) the subset
of diffeomorphisms from M to P which push µ to ̟, with graph lying in
Ω (an obvious item missing in [7]). The pushing condition means for a Borel
map φ :M → P that, for any continuous function h : P → R, the following
equality holds:

(1)

∫

P

h d̟ =

∫

M

(h ◦ φ) dµ,

a property commonly denoted by φ#µ = ̟. When it is satisfied by a
diffeomorphism ϕ : M → P , one may use the change of variable p = ϕ(m)
in the left-hand integral of (1) and infer pointwise, in any couple (x, y) of
source and target charts, keeping abusively the notation y = ϕ(x) for the
local expression of ϕ, the so-called Jacobian equation, namely:

(2)
d̟

dy
(ϕ(x))

∣∣∣∣det
(
∂ϕ

∂x

)
(x)

∣∣∣∣ =
dµ

dx
(x),

where dµ
dx

stands for the Radon–Nikodym derivative of the push-forward
measure x#µ with respect to the Lebesgue measure dx of the chart x, and
similarly for d̟

dy
. The existence of diffeomorphisms pushing µ to ̟ is well-

known [17, 3, 6] but we have to assume henceforth that the graph of at least
one diffeomorphism of the sort actually lies in Ω. Under that assumption,
Diffµ,̟(Ω) is non empty and so is Diff̟,µ(Ω̃), setting Ω̃ =

{
(p,m) ∈ P ×

M, (m, p) ∈ Ω
}
. We view Diffµ,̟(Ω) and Diff̟,µ(Ω̃) as open manifolds

respectively modeled on the Fréchet manifolds Diff̟(P ) := Diff̟,̟(P ×P )
and Diffµ(M) (see details in [7, 8]). Finally, we consider a function c : Ω → R,
called the cost function2, together with the total cost functional

φ ∈ Diffµ,̟(Ω) → C(φ) =
∫

M

c(m,φ(m)) dµ

and its counterpart ψ ∈ Diff̟,µ(Ω̃) → C̃(ψ) =
∫
P
c(ψ(p), p) d̟, which

satisfy the identity: C(ϕ) ≡ C̃(ϕ−1). We will occasionally require additional

1so, all objects are smooth and maps, smooth up to the boundary (if any), unless
otherwise specified

2thus, locally smooth in Ω
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conditions on the cost function (anytime we do, it will be explicit) among
the following ones:

c is lower semi continuous on M × P ;(3a)

c(., p) is superdifferentiable on M for ̟-almost all p ∈ P ;(3b)

det(dMdP c) 6= 0 on Ω ;(3c)

∀m0 ∈M, the map p ∈ ΩP
m0

→ −dMc(m0, p) ∈ T ∗
m0
M is one-to-one(3d)

and so is the map m ∈ ΩM
p0

→ −dP c(m, p0) ∈ T ∗
p0
P, ∀p0 ∈ P .

Here, dealing with a two point function, we have set dM (resp. dP ) for the
exterior derivative with respect to the argument in the manifold M (resp.
P ). We refer to [20, Chapter 10] (see also [14, p.598]) for an account on
the notion of superdifferentiability. As it will be clear from the proof of
Proposition 1.2 below, the results of this paper would hold as well with
condition (3b) replaced by the symmetric one for c(m, .) instead. Condition
(3c) is a non-degeneracy condition labelled as (A2) in [13], while (3d) is a
generating condition often called bi-twist [12, 20] (when the smoothness of
the inverse maps is further assumed, it becomes condition (A1) of [13]). A
typical example of cost function for which all the conditions (3) are fulfilled
is given by M = P equipped with a Riemannian metric and c is (half) the
squared distance (the so-called Brenier–McCann cost function) [14]; if so,
p ∈ ΩP

m means that p is not a cut point ofm and the inverse maps determined
by (3d) are given by the exponential map.

Assuming (3a), we consider the restricted Monge problem, namely the
question: can we find ϕ ∈ Diffµ,̟(Ω) satisfying C(ϕ) = inf

φ∈Diffµ,̟(Ω)
C(φ) ?

Extending the total cost functional C to the set Bµ,̟ of Borel maps from M
to P pushing µ to ̟, Monge’s problem itself reads: can we find φ ∈ Bµ,̟

realizing the inf
Bµ,̟

C ?

The outline of the paper is as follows: in Section 1, we recall what was
obtained in [7] by writing the stationary condition for the total cost C and
we relate it to Monge’s problem; in Section 2, we state the new results
which can be obtained by expressing the minimum condition for C; Section
3 contains the corresponding proofs.

1 Preliminary results

In [7], writing down the Euler equation of the functional C, we obtained the
following result:

Proposition 1.1 If ϕ ∈ Diffµ,̟(Ω) is stationary for C, so is ϕ−1 for C̃, and
there exists two functions f : M → R, f̃ : P → R, defined up to addition of
constants, such that each point of the graph of ϕ is stationary for the two
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point real function:

(m, p) ∈ Ω → F (m, p) = c(m, p) + f(m) + f̃(p).

Let us call the function f (resp. f̃) so determined (up to constant addition),
the c-potential of the diffeomorphism ϕ (resp. ϕ−1). In [7], we assumed
condition (3d), but it is not required for the proof of Proposition 1.1, in-
deed solely based on the Helmholtz lemma. For the reader’s convenience,
let us indicate the argument (see [7] for details). We write δC = 0 with

δC =

∫

M

dP c(m,ϕ(m))(δϕ(ϕ(m)) dµ, where δϕ stands for a variation of the

transporting diffeomorphism ϕ which keeps it on the manifold Diffµ,̟(Ω),
that is, a vector field of a special kind on P , evaluated at the image point
ϕ(m). Specifically, such a vector field V on P should be: first of all tangen-
tial to the boundary of P , if any, so that its flow send P to itself (without
crossing ∂P ); moreover, its flow should preserve the volume measure ̟ or,
equivalently, V should satisfy: div̟ V = 0. In other words, the tangent
space to Diffµ,̟(Ω) at ϕ is spanned by the tangential vectors of the form
V ◦ ϕ with V ∈ ker div̟. Here, the symbol div̟ denotes the divergence
operator defined by the identity:

∫
P
hdiv̟ V d̟ ≡

∫
P
dh(V ) d̟ valid for

each function h : P → R and each vector field V on P (tangential, as said3).
Recalling (1), we thus find:

∀V ∈ ker div̟,

∫

P

dP c(ϕ
−1(p), p)(V (p)) d̟ = 0.

Arguing likewise on C̃, we further get:

∀U ∈ ker divµ,

∫

M

dMc(m,ϕ(m))(U(m)) dµ = 0.

The conclusion of Proposition 1.1 now readily follows from Helmholtz lemma,
which we recall (for a proof, see [7, Appendix]):

Lemma 1.1 (Helmholtz) Let (N, ν) be a measured manifold as above. A
1-form α on N satisfies:

∫
N
α(Z) dν = 0 for each vector field Z ∈ ker divν

(tangential to ∂N if ∂N 6= ∅) if and only if α is exact.

The outcome of Proposition 1.1 for the Monge problem is known; it may
be described as follows:

Proposition 1.2 If (3a) (3b) (3d) hold, a diffeomorphism ϕ ∈ Diffµ,̟(Ω)
is stationary for C if and only if it solves Monge’s problem; moreover, if so,
the c-potential of ϕ is c-convex.

3otherwise, a boundary integral should occur, of course
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Proof. The ’if’ part is obvious, let us prove the ’only if’ one with an
argument of [14]; the meaning of the last statement of the proposition will
be cleared up on the way. Letting ϕ ∈ Diffµ,̟(Ω) be stationary for C and
using Proposition 1.1, consider the function f c given by:

∀p ∈ P, f c(p) = F
(
ϕ−1(p), p

)
− inf

M

(
c(m, p) + f(m)

)
,

called the c-transform [20] (or supremal convolution [14]) of f , up to the
addition of the constant term F

(
ϕ−1(p), p

)
. From (3a), for each p0 ∈ P , the

infimum appearing in the right-hand side is assumed at some point m0 ∈M .
The latter satisfies: ∀m ∈M, c(m, p0)+f(m)+f c(p0) > c(m0, p0)+f(m0)+
f c(p0), or else: ∀m ∈M, c(m, p0) > c(m0, p0)−

(
f(m)−f(m0)

)
, which shows

that the function m ∈ M → c(m, p0) is subdifferentiable at m0. By (3b),
it is thus differentiable at m0 with dMc(m0, p0) = −df(m0). From (3d)
combined with Proposition 1.1, we get m0 = ϕ−1(p0) hence (p0,m0) ∈ Ω̃
and f c(p0) = f̃(p0); since p0 is arbitrary, we obtain: f

c = f̃ . From the latter
and the definition of f c, we infer: ∀m ∈ M, F (m, .) > F (m,ϕ(m)), from
what we readily conclude that f = (f̃)c with (f̃)c given by:

∀m ∈M, (f̃)c(m) = F (m,ϕ(m)) − inf
P

(
c(m, p) + f̃(p)

)
.

So f = (f c)c, a property of f called c-convexity [20, 11]. Besides, for each
map φ ∈ Bµ,̟, integrating on M the inequality F (m,φ(m)) > F (m,ϕ(m))
satisfied µ-almost everywhere yields C(φ) > C(ϕ) by using (1), which shows
that ϕ solves, indeed, the Monge problem �

Remark 1.1 If, in Proposition 1.2, the manifold M has no boundary and
we strengthen (3b) by assuming that the map m ∈ M → c(m, p) is differ-
entiable for ̟-almost all p ∈ P , then either C has no stationary point or
Monge’s problem is trivial. Indeed, if so, letting ϕ ∈ Diffµ,̟(Ω) be station-
ary for C, condition (3d) implies that, for ̟-almost all p ∈ P , the equation
p = ϕ(m) holds at any stationary point m of the function F (., p). In par-
ticular, it holds at the extrema of that function. By Proposition 1.1, the
function F (., p) must be constant, equal to F

(
ϕ−1(p), p

)
which is indepen-

dent of p ∈ P . We infer that F is constant on M × P hence, recalling (1),
that the total cost C itself must be constant.

2 Statement of new results

No one pursued the variational heuristics beyond Proposition 1.1 probably
due to Proposition 1.2. But if we drop the conditions (3a) (3b) (3d), noting
that the variational heuristics presented so far is incomplete because no
local minimum condition is expressed yet for the total cost C, becomes a
timely observation. It is our aim in the present note to write down that
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minimum condition and to derive from it further properties of minimizing
diffeomorphisms. Before stating our results, we require a notion of c-Hessian.

Definition 2.1 Let Φ : M → P be a map whose graph lies in Ω and h :
M → R a function related to Φ by the equation dMc(m,Φ(m)) + dh(m) = 0
on M . The (c,Φ)-Hessian of h is the covariant symmetric 2-tensor on M ,
denoted by Hessc,Φ(f), intrinsically4 defined, in any couple of source and
target charts (x, y), by:

Hessc,Φ(h)(x0) :=
∂2

∂xi∂xj
[c(x, y0) + h(x)] at x = x0,

where, if x0 = x(m0), we have set y0 = y(Φ(m0)).

If ϕ ∈ Diffµ,̟(Ω) is stationary for the total cost C, Proposition 1.1 shows
that the couple (ϕ, f), with f the c-potential of ϕ, fulfills the assumption
of Definition 2.1. In that case, for simplicity, we will simply speak of the
c-Hessian of f and denote it by Hessc(f). We would define likewise the c-
Hessian of the c-potential f̃ of ϕ−1 by the local expression (sticking to the

notations used in the preceding definition):

Hessc(f̃)(y0) :=
∂2

∂yi∂yj

[
c(x0, y) + f̃(y)

]
at y = y0,

where, if y0 = y(p0), x0 = x
(
ϕ−1(p0)

)
. We are in position to state our first

result:

Theorem 2.1 Let ϕ ∈ Diffµ,̟(Ω) be stationary for the total cost C. The
following properties are equivalent (still setting f for the c-potential of ϕ and
f̃ for that of ϕ−1):

(i) the second variation of C at ϕ is non negative;

(ii) ∀U ∈ ker divµ,
∫
M

Hessc(f)(U,U) dµ > 0;

(iii) ∀V ∈ ker div̟,
∫
P
Hessc(f̃)(V, V ) d̟ > 0.

Assuming that C admits a local minimum at ϕ, we will infer the pointwise
non negativity of the c-Hessians of f and f̃ from the conclusions (ii)(iii) of
Theorem 2.1, arguing by contradiction with suitable localized divergence
free vector fields. The resulting statement goes as follows:

Corollary 2.1 If the total cost C admits a local minimum at ϕ ∈ Diffµ,̟(Ω),
the c-Hessian of the c-potential of ϕ is non negative, and so is that of ϕ−1.

4the Hessian of a function at a stationary point is intrinsic [15, pp.4–5]



Variational heuristics for Monge’s problem 7

At this stage, let us record a related result, usually derived from the
optimality of the mass transfer plan (I × ϕ)#µ by means of Kantorovich
relaxation and duality [11], according to which the Hessian of the function
F considered in Proposition 1.1 is non negative at each point of the graph of
ϕ. Specifically, since F is stationary on that graph, its Hessian is intrinsically
defined there [15, pp.4–5], and we can quickly derive from Corollary 2.1 the

Corollary 2.2 If the total cost C admits a local minimum at ϕ ∈ Diffµ,̟(Ω),
the Hessian of F is non negative at each point of the graph of ϕ.

Proof. Observe that, anytime a symmetric block matrix H reads
(

A C
tC B

)

with matrices A,B,C of equal size, A and B non negative and det(H) = 0,
the matrix H itself must be non negative. Indeed, the equation det(H −
λI) = 0 reads det(A−λI) det(B−λI) = det(A) det(B); if a negative eigen-
value λ satisfied it, each left hand determinant being strictly larger than the
corresponding right hand one, we would reach a contradiction. Under the
assumption of Corollary 2.1, at each point of the graph of ϕ in M × P , in
any couple of charts (x, y), the matrix of the Hessian of F is easily seen to
fulfill the above conditions. So it must be non negative �

From now on, condition (3c) is assumed; let us figure out its impact on
the preceding results. If (3c) holds, the implicit function theorem provides,
for each (m0, p0) ∈ Ω, setting α0 = −dMc(m0, p0), neighborhoods U0 of p0

in P and W0 of (m0, α0) in T
∗M , and a map E

(m0,p0)
c : W0 → U0 such that:

α ≡ −dMc
(
m,E(m0,p0)

c (m,α)
)
.

Following [12], maps like E
(m0,p0)
c may be called local c-exponential maps.

Observe that, for any (m1, p1) close enough to (m0, p0) in Ω such that, setting

α1 = −dMc(m1, p1), the point (m1, α1) lies in W0, the maps E
(m0,p0)
c and

E
(m1,p1)
c coincide on W0∩W1. IfM is simply connected, one can thus extend

uniquely the map E
(m0,p0)
c to a neighborhood W(m0,α0) of a global section of

T ∗M passing through α0 at m0 and call it the (m0, p0)-determination of the
c-exponential map on M . With these notions at hand, Corollary 2.1 can be
strengthened as follows:

Corollary 2.3 If condition (3c) holds and C admits a local minimum at
ϕ ∈ Diffµ,̟(Ω), the c-Hessian of the c-potential f of ϕ must be positive
definite, and so must be that of ϕ−1; in particular, the local minimum of C
must be strict. Moreover, the Jacobian equation (2) satisfied by ϕ, written
locally in terms of f via a local exponential map, reads as a Monge–Ampère
equation of elliptic type.

Remark 2.1 Under the assumption of Corollary 2.3, we can improve Corol-
lary 2.2 by noting that, for each (m0, p0) ∈M×P lying in the graph Γϕ of ϕ,
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the restriction of Hess(F )(m0, p0) to the subspace Tm0
M ×{0} of T(m0,p0)Ω

coincides with Hessc(f)(m0), hence it admits n positive eigenvalues (each

repeated with its multiplicity); by Proposition 1.1, the n remaining eigenval-
ues of Hess(F )(m0, p0) vanish. Using the compactness of M , we infer the
existence of a neighborhood Nϕ of Γϕ in Ω such that F > F

∣∣
Γϕ

on Nϕ \Γϕ.

This local result, obtained under (3c), should be compared to the global
one, namely F

∣∣
Γϕ

= inf
M×P

F , derived from the conditions (3) but (3c), in the

course of the proof of Proposition 1.2.

Finally, if the conditions (3c) (3d) hold, all local c-exponential maps
coincide with the one (just denoted by Ec) globally defined by the generating
condition. If so, we can improve the preceding results and, ultimately, reduce
the solution of Monge’s problem to the construction of an elliptic solution
of a Monge–Ampère equation. Specifically, we will prove:

Theorem 2.2 If the cost function satisfies (3c) (3d), there exists at most
one local minimizer ϕ ∈ Diffµ,̟(Ω) of the total cost functional C. If it
exists, it should read m 7→ ϕ(m) = Ec(m,df(m)) for some c-potential f with
Hessc(f) positive definite on M and f elliptic solution of the Monge–Ampère
equation:

(4)
d̟

dy
(ϕ(x)) det

(
Hessc(f)(x)

)
=

∣∣∣∣∣det
(

∂2c

∂yk∂xi
(x, y)

)

y=ϕ(x)

∣∣∣∣∣
dµ

dx
(x)

Conversely, if f solves (4) with5, ∀m ∈ M, ϕ(m) = Ec(m,df(m)) ∈ ΩP
m

and Hessc(f) non negative at one point, the map ϕ : M → M must lie in
Diffµ,̟(Ω) and be a local minimizer of the total cost C. Furthermore, if (3a)
(3b) hold, f is c-convex and the diffeomorphism ϕ actually solves the Monge
problem associated to C.

The next section contains successively the proofs of Theorem 2.1, of its
two corollaries, and of Theorem 2.2 (except for its last part, straightforward
here from Proposition 1.2).

3 Proofs of the new results

3.1 Proof of Theorem 2.1

Let ϕ ∈ Diffµ,̟(Ω) be stationary for C and, for t a small real parameter, let
t 7→ ϕt ∈ Diffµ,̟(Ω) be an arbitrary path such that ϕ0 = ϕ. We can uniquely
write ϕt = ξt ◦ ϕ with t 7→ ξt ∈ Diff̟(P ) such that ξ0 = the identity of P .
In particular, ξ̇0 is a tangential vector field on P lying in ker div̟ (setting

5the first condition is sometimes called stay-away (away, from the singular locus of c)
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as usual ξ̇0(p) =
∂
∂t
ξt(p)

∣∣
t=0

). We will prove the equivalence (i) ⇐⇒ (ii)
by establishing the equality:

(5)
d2

dt2
C(ϕt)

∣∣
t=0

=

∫

P

Hessc(f̃)(ξ̇0, ξ̇0) d̟.

Using arbitrary source and target charts x, y, and the Einstein summation

convention, one routinely finds: d
dt
C(ϕt) =

∫
M

∂c
∂yi

(x, ϕt(x))
∂ϕi

t

∂t
(x) dµ(x)

where dµ(x) = dµ
dx
(x)dx, then the second variation expression:

d2

dt2
C(ϕt) =

∫

M

{
∂c

∂yi
(x, ϕt(x))

∂2ϕi
t

∂t2
(x) +

∂2c

∂yi∂yj
(x, ϕt(x))

∂ϕi
t

∂t
(x)

∂ϕi
t

∂t
(x)

}
dµ(x).

Here, to spare the unfamiliar reader, we did not use a global linear connec-
tion (on P ) to compute the second derivatives which occur in the integrand.
Doing so, we must be careful, as explained in the following remark.

Remark 3.1 Taken separately, the local scalar terms ∂c
∂yi

(x, ϕt(x))
∂2ϕi

t

∂t2
(x)

and ∂2c
∂yi∂yj

(x, ϕt(x))
∂ϕi

t

∂t
(x)

∂ϕi
t

∂t
(x) are not invariant under a change of charts,

unlike their sum, indeed equal to the global real function: m ∈ M →
∂2

∂t2
c(m,ϕt(m)). Therefore these terms cannot be integrated separately (un-

less the deformation ξt is supported in the domain of a single chart of P , of
course). Still, in each couple of source and target charts, splitting the local

expression ∂2

∂t2
c(x, ϕt(x)) of the global function into the above non invariant

terms can be done in a unique way, by using the canonical flat connection
of the P chart. Anytime we will have to integrate on a manifold a global
real function splitting uniquely into a sum of non invariant local terms, we
will stress that the integral should not be split by putting the sum between
braces, as done above. As long as they are written in the same charts, the
addition of two such sums {a1 + a2}+ {b1 + b2} may, of course, be written
between a single pair of braces {a1 + a2 + b1 + b2}.

Back to our proof, using ϕt = ξt ◦ ϕ, recalling (1) and setting t = 0, we
infer:

(6)
d2

dt2
C(ϕt)

∣∣
t=0

=
∫

P

{
ξ̈i0
∂c

∂yi
(ϕ−1(y), y) + ξ̇i0ξ̇

j
0

∂2c

∂yi∂yj
(ϕ−1(y), y)

}
d̟(y),

where d̟(y) = d̟
dy

(y)dy and ξ̈i0 =
∂2

∂t2
ξit(y)|t=0. To proceed further, we note

that the integral
∫
P
f̃ (ξt(y)) d̟(y) is independent of t. Differentiating it
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twice with respect to t at t = 0, we get:

0 =

∫

P

{
ξ̈i0
∂f̃

∂yi
(y) + ξ̇i0ξ̇

j
0

∂2f̃

∂yi∂yj
(y)

}
d̟(y).

Adding this vanishing integral to the right-hand side of (6), applying the
last part of Remark 3.1 and recalling the stationary point equation:

∂c

∂yi
(ϕ−1(y), y) +

∂f̃

∂yi
(y) ≡ 0,

derived at once from Proposition 1.1, we obtain (5) as desired.

A similar argument would yield:

d2

dt2
C̃(ϕ−1

t )
∣∣
t=0

=

∫

M

Hessc(f)(ζ̇0, ζ̇0) dµ,

with the vector field ζ̇0 ∈ ker divµ obtained by writing ϕ−1
t = ζt ◦ ϕ−1 for

a unique path t 7→ ζt ∈ Diffµ(M). It would imply the other equivalence

(i) ⇐⇒ (iii), since C̃(ϕ−1) ≡ C(ϕ) is a local minimum of C̃ as well. The
proof of Theorem 2.1 is complete.

3.2 Proof of Corollary 2.1

Strategy Let ϕ ∈ Diffµ,̟(Ω) realize a local minimum of the total cost
C and let f : M → R denote its c-potential, as provided by Proposition
1.1. Arguing by contradiction, we suppose the existence of a point m0 ∈
M such that the quadratic form associated to the symmetric bilinear one
Hessc(f)(m0) : Tm0

M × Tm0
M → R can take negative values. We will

contradict property (ii) of Theorem 2.1 by constructing a vector field U ∈
ker divµ supported near m0 such that

∫
M

Hessc(f)(U,U) dµ < 0. A similar
argument would hold for ϕ−1, of course.
We will proceed stepwise, choosing a good chart at m0, constructing the
vector field U in that chart and evaluating the above integral; we set n =
dimM .

Choice of a chart We pick any chart y of P at ϕ(m0) but a special
chart x of M centered at m0, namely a chart which pushes the measure
dµ to the canonical Lebesgue measure dx. The existence of such µ-adapted
charts, to call them so, is well-known [3, 6] and timely, here, to transform
the divµ operator on M into the usual div operator of Rn (up to sign) that
is, the divergence operator associated to the measure dx (simply denoted by
div below). Since the orthogonal group O(n) preserves the measure dx, we
may further choose the chart x such that the matrix Hij(0) of Hessc(f)(m0)
is diagonal, with eigenvalues λ1 6 λ2 6 . . . 6 λn (each repeated with its
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multiplicity). Under our assumption: λ1 < 0. Since the unimodular group
SL(n,R) preserves the measure dx, we may rescale the chart x in order to
have: λ1 6 −3 and, ∀i ∈ {2, . . . , n}, λi 6 1

2 . Let the chart x be fixed so and
let x 7→ Hij(f)(x) denote the local expression of the map m 7→ Hessc(f)(m).
The inequality: ∀v ∈ R

n, Hij(f)(0)v
ivj 6 −3(v1)2+ 1

2

∑n
i=2(v

i)2, combined
with the continuity of the map (x, v) 7→ Hij(f)(x)v

ivj as (x, v) varies near
x = 0 with v of length 1 (say), implies the existence of a real ε > 0 such
that:

(7) ∀(x, v) ∈ R
n×R

n, max
16i6n

|xi| 6 ε⇒ Hij(f)(x)v
ivj 6 −2(v1)2+

n∑

i=2

(vi)2.

Construction of a divergence free vector field The vector field on R
n

given by w(x) = x1
∂

∂x2
−x2 ∂

∂x1
satisfies div(w) = 0. The flow of w preserves

any function h : Rn → R factoring through a function H : [0,∞)×R
n−2 → R

as: h(x) = H(
√

(x1)2 + (x2)2, x3, . . . , xn). Any such function h thus satisfies
div(hw) = 0.
Let us fix a cut-off function α : [0,∞) → [0, 1] equal to 1 on [0, ε/2], vanishing
on [ε/

√
2,∞), decreasing in-between, and consider the function h : Rn → R

given by:

h(x) = α
(√

(x1)2 + (x2)2
) n∏

i=3

α
(
|xi|

)
.

We know that div(hw) = 0 and that the vector field hw is supported in the
open box Bn

ε =
{
x ∈ R

n,max16i6n |xi| < ε
}
. Since the chart x is µ-adapted,

we may view hw as the expression in that chart of a divµ free vector field U
in M supported in the inverse image x−1(Bn

ε ) ⊂M .

Calculation of an integral Let us consider the integral
∫
M

Hessc(f)(U,U)dµ
which is equal to:

∫
Bn

ε
h2(x)Hij(f)(x)w

iwjdx. From (7), it is bounded above
by:
(
2

∫ ∞

0
α2(ρ)dρ

)n−2 ∫

B2
ε

α2
(√

(x1)2 + (x2)2
) (

−2(x2)2 + (x1)2
)
dx1dx2.

Note that the function (x1, x2) → α
(√

(x1)2 + (x2)2
)
vanishes outside the

Euclidean ball of radius ε centered at 0; using polar coordinates (r, θ) in
R
2 \ {0}, we thus find that the last integral is equal to:

∫ ε

0
α2(r)r3dr ×

∫ 2π

0

(
cos2 θ − 2 sin2 θ

)
dθ ≡ −π

∫ ε

0
α2(r)r3dr.

We conclude that
∫
M

Hessc(f)(U,U)dµ is bounded above by a negative real,

namely by −π
(
2
∫∞

0 α2(ρ)dρ
)n−2 ∫ ε

0 α
2(r)r3dr, contradicting property (ii)

of Theorem 2.1, as desired.
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3.3 Proof of Corollary 2.3

Let again ϕ ∈ Diffµ,̟(Ω) realize a local minimum of the total cost C. Fix
an arbitrary point m0 ∈M and take a µ-adapted chart x of M centered at
m0 and a ̟-adapted chart y of P centered at p0 = ϕ(m0). From (3c) and

the definition of E
(m0,p0)
c , the map x 7→ y = ϕ(x) is defined near x = 0 by

the equation:

(8)
∂f

∂xi
(x) +

(
∂c

∂xi
(x, y)

)

y=ϕ(x)

= 0.

Differentiating the latter yields (sticking to the notation Hessc(f) = Hij(f)dx
i⊗

dxj):

Hij(f)(x) = −
(

∂2c

∂yk∂xi
(x, y)

)

y=ϕ(x)

∂ϕk

∂xj
(x).

Taking determinants, recalling that the symmetric matrix Hij(f)(x) is non
negative (by Corollary 2.1) and using (2), we obtain a local Monge–Ampère
equation satisfied by f , namely:

det (Hij(f)(x)) =

∣∣∣∣∣det
(

∂2c

∂yk∂xi
(x, y)

)

y=ϕ(x)

∣∣∣∣∣ ,

where y = ϕ(x) is given by (8). From (3c), the right-hand side of this equa-
tion nowhere vanishes; so the matrix Hij(f)(x) must be positive definite. So
must be the c-Hessian of f throughout the manifold M , since the point m0

is arbitrary. Finally, as is well-known, the positive definiteness just obtained
implies, indeed, the ellipticity of the Monge–Ampère equation; from (5), it
also shows that C(ψ) > C(ϕ) for any ψ 6= ϕ close enough to ϕ in Diffµ,̟(Ω).
A similar argument would hold for ϕ−1.

3.4 Proof of Theorem 2.2

Let ϕ ∈ Diffµ,̟(Ω) be a local minimizer of C. By Proposition 1.1 and (2),
it must admit a c-potential f : M → R solving equation (4). Furthermore,
from Corollary 2.3 and its proof, the c-Hessian of f must be positive definite,
so f is an elliptic solution of (4). As such, it is unique up to addition of a
constant, as readily shown by a maximum principle argument [2, p.97].

Conversely, let f solve (4) with ϕ(m) ≡ Ec(m,df(m)), the graph of ϕ
lying in Ω and Hessc(f) non negative at some point m0 ∈ M . From (4)
read at m0 and (3c), we see that Hessc(f)(m0) must be positive definite;
the positive definiteness of Hessc(f) now spreads to the whole of M due
to (4). At each m ∈ M , using adapted charts at m and ϕ(m) as above,
the definition of the map ϕ yields (8) from what we infer, by differentiation
and combination with (4), that (2) holds; so ϕ pushes µ to ̟. Since the
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latter are volume measures, the map ϕ :M → P must be onto6 as it is easy
to check using (1) and, by the inverse function theorem, it must be a local
diffeomorphism, thus a covering map. IfM is orientable, since µ and ̟ have
equal total mass, a degree argument shows that ϕ must be 1-sheeted hence,
indeed, a diffeomorphism. In the non orientable case, one can argue similarly
using the orientation covers of M and P , and infer again that ϕ must be a
diffeomorphism (exercise). So ϕ ∈ Diffµ,̟(Ω). Finally, from the definition

of ϕ and the proof of Proposition 1.1, we know that ϕ−1 ∈ Diff̟,µ(Ω̃) is

stationary for C̃. From the positive definiteness of Hessc(f) combined with
the analogue of (5) for C̃ at ϕ−1, we see that C̃ admits at ϕ−1 a strict local
minimum. Since C(ϕ) ≡ C̃(ϕ−1), so does C at ϕ.
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