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Abstract

Two independent methods to obtain ab initio effective rotational Hamiltoni-

ans have been implemented recently. The first one is based on a generalization of

perturbation theory to non-commutative rings, the other one on contact transforma-

tion techniques. In principle, both methods are able to give rotational Hamiltonians

including centrugal distortion effects of arbitrary high orders. These methods are

compared for the first time in this article with regard to calculations of the rotational

levels of methane vibrational ground state.
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1 Introduction

The resolution of the molecular Schrödinger equation gives in principle the energy levels

commonly associated with the rotational spectrum of a polyatomic molecule. The term

“rotational” is coined because the corresponding levels are mainly related to the quan-

tization of molecular rotational motion. However, for their accurate characterisation an

account of the coupling with other types of nuclear motion is mandatory, and it becomes

rapidly prohibitive to deal with all molecular degrees of freedom (dof) as the number

of atoms increases. So, it is often desirable to separate electronic from nuclear dof, and

also within nuclear dof, to separate “vibrational” dof from the “rotational” ones. Then,

to obtain the rotational energy levels of a polyatomic molecule, one has only to solve an

effective rotational Hamiltonian eigenvalue problem for a given vibrational state.

A formal derivation of effective models in quantum mechanics using a separation of a

Hamiltonian into a zeroth-order approximation and a perturbation has been the subject

of many studies. The well-known Rayleigh-Schrödinger perturbation theory has been

extended for a derivation of effective Hamiltonians defined on a degenerate zeroth-order

eigenspace by Bogolyubov and Tiablikov [1], Bloch [2] , Des Cloizeaux [3], Soliverez [4],

and other investigators using projector and resolvent operators. Another approach using

unitary Contact Transformations (CT), originally suggested by Van Vleck [5] gave rise

to a series of successful applications, particularly in molecular physics. A comparison of

various general methods for effective Hamiltonian derivation have been discussed in detail

by Klein [6], Tyuterev et al. [7–9] and Jorgensen [10]. In these works, it has been shown

that different perturbative methods resulted in formally different effective Hamiltonians

which however, could be related with suitably chosen transformations. More recently

Watson [11] has given a supplementary insight on formal relations between several general

approaches, including those implemented in the present work, and Bloch expansion [2].

These studies are very useful to understand the fundamental ambiguities inherent to the

fitting of empirical Hamiltonian parameters to experimental energy levels. They have

paved the path to the development in molecular spectroscopy of reduction theory [12–
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15], which aims at the derivation of empirical effective Hamiltonians containing uniquely

defined parameters, by means of transformations within the subspace spanned by the

corresponding effective wave functions.

However, very few studies are yet available concerning the numerical accuracy and con-

vergence properties of ab initio derived effective Hamiltonians. In this paper we focus on

accurate calculations close to spectroscopic accuracy, based on two types of perturba-

tion approaches, using computer codes developed by the authors. The first one, obtained

from a formalism called the Rayleigh-Schrödinger perturbation theory generalized to the

ring spanned by angular momentum operators [16–19] is equivalent to the “standard

unitary solution” of section 8 of [11]. The second one, is a generalized formulation of the

CT method using super-operator techniques [7–9]. Both methods, implemented by the

authors, are applied in this work to the calculation of methane rotational levels in the

vibrational ground state, starting from the complete vibration-rotational Hamiltonian in

the Eckart-Watson form [20–22].

Methane is a very important molecule for various applications in particular for plane-

tary physics and chemistry. Rotational spectra of methane have been observed through

transparency windows in Saturn and Titan atmospheres [23–25]. Many new experimen-

tal measurements are currently in progress [26–29]. Furthermore, recent improvements

in ab initio calculations of methane potential energy surfaces (PES) [30–33], make this

molecule a good candidate for advanced, benchmark, ro-vibrational calculations. All

calculations in this study were performed by using the same accurate PES recently con-

structed by Nikitin et al. [33], which will be referred to as the NRT PES in what follows.

To apply our perturbation calculations, this PES has been re-expressed in rectilinear

normal coordinates up to the 10th order.

Throughout this article, “methane” will designate the main isotopologue, 12CH4, of this

molecular species. Note that a modeling of methane experimental spectra requires a

sophisticated effective Hamiltonian formalism because of its high symmetry [34]. On

another hand, in theoretical investigations, high symmetry is very useful to diagnose
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bugs in computer codes. The purpose of the present article is to focus on numerical and

convergence issues on a concrete example. As for the formal comparison of the methods

and techniques of calculations, we refer the reader to the above mentionned bibliography,

in particular [9,11].

The article is organized as follows: In Part 2, the generalized Rayleigh-Schrödinger per-

turbation theory is briefly reviewed. In part 3, the contact transformation technique as

implemented in this work is outlined. In Part 4, we proceed with a comparison of the ef-

fective rotational Hamiltonians given by the two methods for different orders up to eight

in angular momentum operators. We conclude on the reliability and the effectiveness of

both approaches.

2 Effective separation of variables and perturbation theory

Let us first introduce a key notation for an effective separation of variables technique,

that is particularly efficient when it is coupled to perturbation theory. It is applicable to

Hamiltonians of the form,H(X, Y ), depending upon two sets of operatorsX and Y acting

on two distinct subsets of dof x and y respectively. We suppose that the Hamiltonian

can be decomposed as,

H(X, Y ) = H0(X)⊗ Idy +H1(X, Y ). (1)

The traditional Rayleigh-Schrödinger theory would correspond to the case where the sets

Y and y are empty.

The operators in X act on a Hilbert space, Vx, of square integrable functions of the x

dof. Similarly, those in Y act on a Hilbert space, Vy, of square integrable functions of

the y dof. The Hilbert space of the whole system is the tensor product, V = Vx ⊗ Vy.

The identity on Vx (respectively Vy) is written Idx (respectively Idy).

To generalize the Rayleigh-Schrödinger theory for this Hamiltonian, we recall the deriva-

tion procedure by Cassam-Chenäı [19]. However, a very similar formulation and notation
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for the separation of x and y dof by CT has been described by Makushkin and Tyuterev

[9]. Thus the considerations of the next sub-section equally apply to both methods used

in this paper.

2.1 Eigen equation for effective operators

Let (ψn)n, (respectively (ΨK)K), be a normalized Hilbertian basis set of Vx (respectively

Vy), we have: Idx =
∑
n
|ψn〉〈ψn|, (respectively Idy =

∑
K
|ΨK〉〈ΨK |). A basis of V is

obtained by taking the tensor product of basis functions, (ψn⊗ΨK)n,K . Since we are free

to choose the basis set of Vx, we can take for (ψn)n a set of orthonormal eigenvectors

of H0. We label this set with positive integers and denote the associated eigenvalues by

(νn)n. For simplicity, we assume that the eigenstates of H0(X) are non-degenerate, but

the method is general.

To solve perturbationally the eigenvalue equation,

H(X, Y )φ = Eφ, (2)

we introduce a real parameter, ε ∈ [0, 1], and the Hamiltonian,

H(X, Y, ε) = H0(X)⊗ Idy + εH1(X, Y ), (3)

such that, H(X, Y, 0) = H0(X)⊗ Idy and H(X, Y, 1) = H(X, Y ).

So, for ε = 0, given our choice for (ψn)n,

H(X, Y, 0)|ψn ⊗ΨK〉 = νn|ψn ⊗ΨK〉 ∀K. (4)

The eigenspaces are degenerate of dimension, dimVy.

Note that we use the same symbols, 〈· · · | and | · · · 〉, for Dirac bra’s and ket’s indifferently

in V , Vx or Vy. Substituting |ΨK〉 by |ΨK〉〈ΨK | in |ψn ⊗ ΨK〉 = |ψn〉 ⊗ |ΨK〉 of Eq.(4),

and summing over K, one obtains,

(H0(X)⊗ Idy)|ψn〉x ⊗ Idy = νn|ψn〉x ⊗ Idy. (5)
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We will assume that, for some fixed n, in the interval ε ∈ [0, 1], the dimVy eigenstates

(ψn ⊗ ΨK)K of H(X, Y, 0) are in one-to-one correspondance with dimVy eigenstates of

H(X, Y, ε), denoted by (φn,K(ε))K , the latter inheriting their labels from their ε = 0

partners. The φn,K(ε)’s can be expanded on the tensorial product basis set as,

φn,K(ε) =
∑
n′,K′

cn,Kn′,K′(ε) ψn′ ⊗ΨK′ . (6)

Introducing dimVx linear operators on Vy, Ψn′(Y, ε), by

∀n′, ∀ΨK , Ψn′(Y, ε)ΨK :=
∑
K′
cn,Kn′,K′(ε) ΨK′ , (7)

we can define a so-called ”effective wave operator“ from Vy onto Vx ⊗ Vy, φn(Y, ε), by

φn(Y, ε) =
∑
n′
ψn′ ⊗Ψn′(Y, ε). (8)

Combining Eqs. (7) and (8), we see from Eq. (6), that the action of the effective wave

operator on the basis functions ΨK gives the exact eigenfunctions of H(X, Y, ε),

φn,K(ε) = φn(Y, ε)ΨK . (9)

We define another operator on Vy, called the ”effective Hamiltonian“, En(Y, ε), by its

action on the basis functions ΨK ,

En(Y, ε)ΨK = En,K(ε)ΨK . (10)

Inserting Eqs. (9) and (10) in the eigenvalue equation of H(X, Y, ε), we have for all ΨK ,

H(X, Y, ε)φn(Y, ε)ΨK = φn(Y, ε)En(Y, ε)ΨK . (11)

Since the ΨK ’s form a basis set, we can write the following identity between operators

acting on Vy,

H(X, Y, ε)φn(Y, ε) = φn(Y, ε)En(Y, ε). (12)

By conjugation, the Hermitian conjugate of the effective wave operator and Hamiltonian

satisfy,

φ†n(Y, ε)H(X, Y, ε) = E†n(Y, ε)φ†n(Y, ε), (13)
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where the operators act on Vy on the left. We will make use of the notation 〈· · · 〉x to

signify that integration is carried over the x-variables only, for example,

〈ψ1 ⊗Ψ1(Y )|ψ2 ⊗Ψ2(Y )〉x = 〈ψ1|ψ2〉Ψ1(Y )Ψ2(Y ). (14)

Note that, if we impose the normalization condition,

〈φ†n(Y, ε)φn(Y, ε)〉x = Idy, (15)

we obtain easily from Eqs. (12) and (13) that the effective Hamiltonian, En(Y, ε), is

Hermitian,

En(Y, ε) = E†n(Y, ε). (16)

2.2 Perturbational solution of the eigen equation for effective operators

Following Cassam-Chenäı [19], let us consider the problem of finding all pairs of operators

E(Y, ε), φ(Y, ε) acting on Vy, satisfying

H(X, Y, ε)φ(Y, ε) = φ(Y, ε)E(Y, ε). (17)

We call the latter equation an eigen equation for effective operators. From the previous

section, one can assert that its set of solutions is non empty provided minor hypotheses. If

one assumes that the eigenpairs (En,K(ε), φn,K(ε))K of H(X, Y, ε) of some band indexed

by quantum number n, are smooth function of ε, one can solve Eq.(17) in a Rayleigh-

Schrödinger fashion. Note that, this smoothness hypothesis is the crucial one: In finite

dimension, it is always possible to relate bi-univoquely two arbitrary sets of linearly

independent functions, provided their cardinal are the same. However, the requirement

that this relation should be smooth as ε varies, is an important constraint implying that

the band considered undergoes no ”catastrophic“ mixing with any other band, in the

sense of catastrophe theory. We postpone the treatment of such a case to a forthcoming

paper on a quasi degenerate version of the present formalism.
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So, we expand the effective rotational Hamiltonian and wave operators as a power series

of ε:

E(Y, ε) = νnIdy + εE(1)(Y ) + ε2E(2)(Y ) + ε3E(3)(Y ) + ε4E(4)(Y ) + ..., (18)

φ(Y, ε) = ψn ⊗ Idy + εφ(1)(Y ) + ε2φ(2)(Y ) + ε3φ(3)(Y ) + ε4φ(4)(Y ) + ..., (19)

Inserting these expressions in Eq. (17) and identifying the terms with the same power of

ε, together with the set of ”Hermiticity“ conditions, ∀k > 0,

〈ψn ⊗ Idy|φ(i)(Y )〉x = 〈φ(i)†(Y )|ψn ⊗ Idy〉x. (20)

and the set of normalization conditions, ∀k > 0,

〈
k∑
i=0

εiφ(i)†(Y )|
k∑
i=0

εiφ(i)(Y )〉x = Idy + o(εn, Y ). (21)

where φ(0)(Y ) = ψn ⊗ Idy and the notation o(εk, Y ) means that lim
ε→0 ε

−ko(εk, Y ) = 0y,

the null operator on Vy, one can determine unambiguously eigensolutions to any order

[19].

That is to say, that the perturbative solution to Eq. (17) is actually unique for a given

H. Of course, if H is transformed by a unitary mapping, the effective wave operator and

effective Hamiltonian will be transformed accordingly.

Making use of the condensed notation,

H1(Y )i,j := 〈ψi ⊗ Idy|H1(X, Y )|ψj ⊗ Idy〉x, (22)

the following expressions have been obtained [19] for the effective Hamiltonian corrective

terms up to order 4,

E(1)(Y ) = H1(Y )n,n, (23)

E(2)(Y ) =
∑
k1 6=n

H1(Y )n,k1H1(Y )k1,n
νn − νk1

, (24)
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E(3)(Y ) = 〈φ(0)†(Y )|H1(X, Y )|φ(2)(Y )〉x − 〈φ(0)†(Y )|φ(2)(Y )〉xE(1)(Y )

=
∑

k1,k2 6=n

H1(Y )n,k1H1(Y )k1,k2H1(Y )k2,n
(νn − νk1)(νn − νk2)

−1

2

∑
k1 6=n

H1(Y )n,k1H1(Y )k1,nH1(Y )n,n +H1(Y )n,nH1(Y )n,k1H1(Y )k1,n
(νn − νk1)2

,

(25)

E(4)(Y ) =
∑

k1,k2,k3 6=n

H1(Y )n,k1
H1(Y )k1,k2

H1(Y )k2,k3
H1(Y )k3,n

(νn − νk1
)(νn − νk2

)(νn − νk3
)

−
1

2

∑
k1,k2 6=n

H1(Y )n,nH1(Y )n,k1
H1(Y )k1,k2

H1(Y )k2,n +H1(Y )n,k1
H1(Y )k1,k2

H1(Y )k2,nH1(Y )n,n

(νn − νk1
)(νn − νk2

)

(
1

νn − νk1

+
1

νn − νk2

)

−
1

2

(∑
k1 6=n

H1(Y )n,k1
H1(Y )k1,n

(νn − νk1
)

)(∑
k1 6=n

H1(Y )n,k1
H1(Y )k1,n

(νn − νk1
)2

)

−
1

2

(∑
k1 6=n

H1(Y )n,k1
H1(Y )k1,n

(νn − νk1
)2

)(∑
k1 6=n

H1(Y )n,k1
H1(Y )k1,n

(νn − νk1
)

)

+
1

2

∑
k1 6=n

H1(Y )2n,nH1(Y )n,k1
H1(Y )k1,n +H1(Y )n,k1

H1(Y )k1,nH1(Y )2n,n

(νn − νk1
)3

. (26)

Note that some misprints have been corrected in Eq. (26) with respect to [19]. These

formulas matches that of section 8 of [11], where the operator TU can be identified with

our normalized effective wave operator. So, order 5 can be found in this reference.

3 The contact transformation method

The method of contact transformations (CT) aims at simplifying solutions of classical or

quantum mechanical problems by building some simpler effective Hamiltonian models.

The main idea is to transform a full Hamiltonian H to a simpler operator Heff defined

in a finite dimensional space, E , spanned by known eigenfunctions φk of an exactly

solvable zeroth-order approximation. Most often, this is realized by applying a similarity

transformation H̃ = T−1HT followed by a projection P on the E subspace i.e. Heff =

PH̃P . Once a zeroth-order approximation H0 is chosen, the perturbation operator λV =

H −H0 is commonly expanded as a power series, λV1 +λ2V2 + ..., of a formal parameter
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λ considered as being small. In molecular physics, following Van Vleck [5], the operator

T is usually chosen in the form of successive unitary CT [5,8,9,11,13,35–44]:

H̃ = ...eiλ
2S2eiλS1He−iλS1e−iλ

2S2 ... = H0 + λ{V1 + [iS1, H0]}+ ... (27)

In order to preserve the fundamental properties of an Hamiltonian operator in Heff , the

generators of the transformations, Sn, are usually chosen to be Hermitian and totally

symmetric with respect to the molecular point group. In addition, they should preserve

the invariance of the Hamiltonian under the time reversal. Furthermore, the CT method

is based on the assumption that the CTs, Eq. (27), can be chosen in a way which does

not affect the rate of convergence of a Hamiltonian expansion.

An iterative procedure can then be developed by introducing the first transformed Hamil-

tonian H1 = eiλS1He−iλS1 , second transformed Hamiltonian H2 = eiλS2H1e−iλS2 , n-

times transformed Hamiltonian Hn = eiλSnHn−1e−iλSn and so on, up to H∞ ≡ H̃. All

these intermediate Hamiltonians are also expanded in powers of the formal parameter

Hk =
∑
n λ

nHk
n. Using the Hausdorff commutator expansion, recursive formulas have

been established [8,9,11,13,37,45] which link the n-th order term of the k-times trans-

formed Hamiltonian, Hk
n, with CT-generators S1, ...Sk and the expansion terms, Hk−1

m , of

the (k − 1)-times transformed Hamiltonian. By ordering considerations, it can be easily

shown that the final, transformed Hamiltonian should only contain terms with n = k,

that is H̃ =
∑
n λ

nHn
n . The explicit expressions for arbitrary n and k can be found in

[8,9] . Up to this point these formulae are quite general. Their practical application de-

pends on the meaning of the term ”simpification” attached to the transformation (27).

In molecular physics and spectroscopy, CTs are usually applied to reduce a complicated

problem defined on a complete space of wavefunctions to one defined on a subspace

spanned by a limited number of strongly coupled nearby quantum states. Particularly

important applications correspond to the case where the subspace can be identified with

one component of a tensor product Hilbert space. As we have seen, this occurs in the case

of an effective separation of dof. For instance, in the derivation of an effective Hamilto-

nian for the nuclear motion by separating electronic variables [38] and in the derivation
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of effective rotational Hamiltonian by separation of vibrational variables [13,37,43,45].

In a rather wide class of applications, the meaning of ”simplification” can be formalized

concisely by the constraint, [H̃,A] = 0, that the transformed Hamiltonian, H̃, should

commute with some operator A called the modeling operator [8,9]. Different choices of

the modeling operators result in different forms of effective Hamiltonians, Heff . In the

case of a zeroth order spectrum having non-degenerate or purely degenerate states [35],

H0 =
∑
mE

(0)
m P (0)

m , a natural choice is A = H0. The H̃-matrix in the zeroth-order eigen-

basis takes then a block-diagonal form H̃ =< H̃ > where the notation < O > stands for

the block-diagonal part of an operator, O. The choiceA = P (0)
m where P (0)

m is the projector

on the mth eigen-space of the zeroth-order Hamiltonian, associated to the degenerate or

non-degenerate eigenvalue, E(0)
m , amounts to the Hermitian version of the Bloch projector

formulation of perturbation theory [2–4,9]. Extensions of the modeling operator to the

quasi-degenerate case has been considered in [8]. In the case of the initial Hamiltonians

depending on different types of variable, H(X, Y ), discussed in the previous section and

given by Eq. (1), the choice A = A(X) allows a full or a partial separation of x-variables

by CT [7,9].

At n-th order of CT, the conditions applied to the Sn generator and the n-th order

effective Hamiltonian term are written as,

[iSn, H0] +Hn−1
n = Hn

n ; [Hn
n ,A] = 0 (28)

The general solutions of these equations for degenerate or quasi-degenerate zeroth-order

states are given in [8,9] in terms of operations < · · · > (taking the block-diagonal part

with respect to H0 eigenstates partitioning) and the inverse of operation, [H0, · · · ], con-

sisting in taking the commutator with H0. Some mathematical aspects of these solutions

are considered in [9,35,39]. With an appropriate choice of A eqs.(28) are invariant under

the substitution Sn => Sn+ < Zn >, where Zn v λn is an arbitrary Hermitian operator.

This gives a variety of effective Hamiltonians in a given E space and explains how dif-

ferent expressions are obtained with various equivalent formulations of the perturbation
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theory [7–9].

CT can be viewed in terms of the Lie algebra, L, generated by multiple commutators

of iSn with H0 and Vn [9,39]. For a given choice of the modeling operator A, this Lie

algebra is decomposed as L = L(0) ⊕ L(⊥), where L(0) denotes the subspace of elements

commuting with A. Consequently the transformed Hamiltonian contains only operators

restricted to L(0), H̃ ∈ L(0), resulting in a full or a partial separation of variables.

From the computational point of view two things are essential: programming general

solutions of CT equations (28) and calculating structural constants of the Lie algebra.

For vibration-rotation Hamiltonian this has been implemented in [40,41].

A separation of variables permits a drastic reduction of the dimension of Hamiltonian

matrices. Consequently, a computational implementation for molecular spectra calcula-

tion becomes much easier, and spectroscopic accuracy can be achieved. Moreover, CT

provide a mathematical background for intuitively introduced physical models for bound

states of semi-rigid molecules near the equilibrium configuration and gives a simple in-

terpretation of effective parameters.

The contact transformation method has been widely used in the literature on high-

resolution molecular spectroscopy as reviewed by Amat, Nielsen and co-workers [42,45],

Aliev and Watson [13], Camy-Peyret and Flaud [37], Sarka and Demaison [43] and others

[9,15,46]. It has been developed for polyatomic molecules by Sibert [47] and applied to

methane by Wang and Sibert [44]. The irreducible tensor formulation of CT for methane

was discussed in [15,48]. For nonrigid molecules the CT method has been extended by

Starikov and Tyuterev [9,46,49] with application to inversion in ammonia and large-

amplitude bending vibration in water molecule, whereas a classic-mechanical version

of Birkhoff-Gustavson transformations similar to CT has been reviewed and employed

for floppy molecules by Sugny and Joyeux [50]. Most implementations start from an

harmonic vibrational approximation in H0, through anharmonic terms can be included

in the zeroth-order approximation [46,51] as well. With the notation of the previous

section, this method yields an effective separation of ”fast” vibrational variables (X)
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and ”slow” rotational variables (Y) as described in more details in [9]. In this work,

CT calculations have been performed with the optimized algorithms and computational

techniques developed and implemented in the MOL-CT program suite by Tyuterev,

Tashkun and co-workers [40,41,52].

4 Comparison of ab initio effective rotational Hamiltonians

4.1 The Eckart-Watson Hamiltonian

The Hamiltonian of the system considered in this work will be the Eckart-Watson Hamil-

tonian for non linear molecules [21]. The singularities of the Watson Hamiltonian prevent

a proper study of the behaviour of a molecular system in their neighbourhood. However,

since their measure is zero in nuclear configuration space, they are not necessarily a

problem for the description of the rovibrational energy levels, in the same manner as

the cusp of the electronic Hamiltonian do not prevent an accurate determination of the

electronic energy levels. Moreover, in this study Hamiltonian singularities are not an

issue.

If one denotes,X = {(Qi)i, (Pk)k}, the set of normal coordinates and conjugate momenta,

and Y = {θ, χ, φ, Pθ, Pχ, Pφ)}, the set of Euler angles and momenta, the Eckart-Watson

Hamiltonian written as, H(X, Y ), can be decomposed as in Eq. (1), as required by the

generalized Rayleigh-Schrödinger perturbation theory.

The two approaches for obtaining effective rotational Hamiltonians, recalled in the pre-

vious section, will make use of different partitioning of the Eckart-Watson Hamiltonian

into zeroth-order operator and perturbation. The generalized perturbation theory will

take the full (J = 0)-vibrational hamiltonian as a zeroth-order approximation written in

atomic units as follows,
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H0(X) =
1

2

∑
k

P 2
k + U +

1

2

∑
αβ

µαβπαπβ −
1

8

∑
α

µαα. (29)

In the equations above, µ is the 3 by 3 effective reciprocal inertia matrix whose series

expansion in terms of the normal coordinates is

µ =
+∞∑
r=0

(
1

2

)r
(r + 1)

∑
k1,...,kr

I−1
e ak1I

−1
e . . . akrI

−1
e Qk1 . . . Qkr , (30)

where, I−1
e is the inverse of the inertia tensor I(Q1, ..., Qn) at equilibrium and (aki)i the

derivatives of the latter with respect to the normal coordinates,

ak =

(
∂I

∂Qk

)
0

. (31)

π is the vibrational angular momentum operator determined by the Coriolis coupling

constants and only depending upon the operators in the set X. The term U represents

the potential energy surface (PES) of electronic origin in the Born-Oppenheimer approx-

imation, expressed as a function of the normal coordinates Qi.

In this case, the perturbation describes the vibration-rotation coupling

H1(X, Y ) =
∑
αβ

1

2
µαβ ⊗ ΠαΠβ − µαβπα ⊗ Πβ. (32)

where Π is the total angular momentum, and is the sole quantity depending upon the

operators in the set Y .

The current implementation of the CT uses the harmonic oscillator Hamiltonian as

zeroth-order approximation

H0(X) =
1

2

∑
k

P 2
k + U (2) (33)

where, U (2) is the PES truncated at second order. In the latter case, anharmonicity, the

vibrational Coriolis term and the Watson mass-dependent correction are all included in

the perturbation operator H1(X, Y ). This results in many more terms to be accounted
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for in the perturbation expansion. However, the advantage of the simplicity of the zeroth-

order approximation is that, it allows one to avoid intermediate summations on virtual

vibrational states.

In this comparative study, we have used for U the NRT methane PES [33] expanded

as a Taylor series of normal coordinates up to the tenth order. This was done by using

analytical formulas, with the help of a symbolic algebra program. A detailed account of

this procedure for symmetric molecules has been given by Rey et al. [53].

By construction, an effective Hamiltonian shares the same eigenvalues as the original one.

So, in principle, if the radius of convergence of their expansion series is non zero, both

methods explored in this work should converge towards the same spectra. Whether this

convergence hypothesis is met or not is not clear mathematically, since they include non

bounded operators. However, it is legitimate to investigate numerically the convergence

behaviour of both methods, and to compare one with the other.

4.2 Convergence of the generalized perturbation method

The implementation of the generalized perturbation method depends upon several pa-

rameters whose influence on the convergence of the final results will be assessed. These

parameters are:

- The order of the Taylor expansion of the NRT PES U in H0 (see tab. 5)

- The order of the Taylor expansion of the µ-matrix in H0 (see tab. 6)

- The number of basis functions retained in the last step of the vibrational calculation,

which is determined by an energy criterium (see tab. 1)

- The order of the Taylor expansion of the µ-matrix in H1 (see tab. 2)

- The maximum value of the summation indices k1, k2 in the second and third order

corrective term of the effective Hamiltonian (see tab. 2)

- The maximum value of the summation indices k1, k2, k3 in the fourth order corrective

term of the effective Hamiltonian (see tab. 3)
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- The order of the generalized perturbation expansion (see tabs. 2, 3 and 4)

4.2.1 Convergence of the H0 spectrum

To implement the generalized perturbation method, one needs to solve first the eigen-

value problem for the H0 Hamiltonian. This has been done by performing vibrational

mean field configuration interaction (VMFCI) calculations as implemented in the com-

puter code CONVIV developed by Cassam-Chenäı and Liévin [54]. The method will not

be described in details. It suffices to say here, that it is a variational method that en-

compasses as particular cases the vibrational self-consistent field (VSCF) method [55–57]

and the vibrational configuration interaction (VCI) [58,59]. But it is much more flexible,

because it allows one to contract arbitrary groups of dof in a hierarchical manner, while

controlling the growth of the basis set size by discarding high energy product basis func-

tions, according to a so-called ”contraction-truncation scheme“. It is different from the

traditional contraction method [60–64], because the Hamiltonian of an active group of

dof takes into account the effect of the mean field of the spectator groups as proposed

by Bowman and Gazdy [65]. However, in contrast with [65], for a given partition of the

dof, self-consistency is achieved by iterating VCI calculations for active groups of dof in

the mean field of the spectator groups.

The contraction-truncation scheme employed in this work can be written in our notation

as MSP-VSCFCI(15,17,15,17)/VSCFCI(ν1 − ν3; 48000)/VCI(Z).

MSP-VSCFCI(15,17,15,17) means three things. First, that we started from 15 harmonic

oscillator (HO) functions for mode 1 (using the conventional spectroscopic ordering),

153 HO product functions such that the sum of quantum numbers is less than 17 for

mode 2, 680 HO product functions such that the sum of quantum numbers is less than

15 for mode 3, and 969 HO product functions such that the sum of quantum numbers

is less than 17 for mode 4. Secondly, that we have performed a minimal symmetry pre-

serving VMFCI, that is to say, a contracted CI calculation, contracting only degenerate

dof together in the mean field of the other dof. And thirdly, that we have iterated such a
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VMFCI calculation with the same partitioning up to achieve self-consistency: vibrational

self-consistent configuration interaction calculation (VSCFCI). Self-consistency was con-

sidered sufficient when after 7 steps the zero point energies (ZPE) of all four modes, mean

field Hamiltonians were the same to at least 10 digits. At step 8, the stretching modes 1

and 3 were contracted with truncation of the product basis functions at 48000 cm−1 on

the sum of the energy of their components. After a single iteration, the ZPE of the three

contractions (modes 1-3, mode 2, mode 4) were equal to within 2 × 10−5 cm−1 , so we

considered that self-consistency was achieved and that step 8 and 9 constitute again a

VSCFCI calculation for this new partition. It is denoted by VSCFCI(ν1 − ν3; 48000).

Finally, all dof were contracted in a vibrational configuration interaction (VCI) step.

Different truncation thresholds on the sum of component energies, Z, were considered

for constructing the final product basis set.

The convergence of the first vibrational levels that are well-determined experimentally,

with the expansion order of the NRT methane PES [33] in terms of normal coordinates

along with the effect of the µ-tensor expansion order in the (J = 0)-Watson Hamiltonian

are displayed in Tabs. 5 and 6 of Appendix A. Similar studies have been conducted in

the past on different molecules and/or PES [16,54,66–70], and the results obtained in

this work essentially confirm previous findings. For the rest of the study, we have chosen

a PES re-expansion of 10th order in normal coordinates and a µ-tensor second order

expansion in H0 (see Appendix A for more details).

insert Tab. 1 here.

Having fixed these two parameters, we now discuss the convergence with respect to the

threshold Z shown in Tab. 1. Tab. 1 shows that for Z=19318 cm−1 , one can expect the

ZPE to be converged to within the hundredth of cm−1 and the fundamental transitions

to the tenth of cm−1 . The 24 sublevels of the octad (levels between 3800 cm−1 and

4600 cm−1 ) are expected to be converged to at least the cm−1 accuracy. All eigenstates

up to 14851 cm−1 above ZPE (16864 eigenvalues, counted with their degeneracy, and

eigenvectors of a square matrix of dimension 74978) have been obtained for Z=19318
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cm−1 and are available upon request. They are not reported in this article, but of course,

convergency deteriorates as the energy increases. However, in the implementation of the

generalized Rayleigh-Schrödinger perturbation method, the H0 eigenstates are used in

corrective terms and their contribution to the vibrational ground state effective Hamilto-

nian decreases as their energy increases. So, we have not found it justified to go beyond

Z=19318 cm−1 .

Moreover, preliminary studies of our 10th order polynomial PES shows that it has arte-

factual barriers. In particular, it is not reliable in the range higher than 10600 cm−1 above

the ZPE in the direction of the bending dof. Since the highest initial HO basis functions

have already non negligeable weight in these pathological regions of the potential expan-

sion, it is not desirable to increase the size of the initial HO basis set, nor to retain in

VMFCI steps high energy contraction basis functions that might have some weight on

the highest HO functions. Further work is in progress to overcome these difficulties with

the help of other types of initial basis functions.

Despite the limitations of the potential and of our variational calculation, we note that

the agreement with the levels derived from experiment by Albert et al. [71], is very satis-

factory: most tabulated levels are within the cm−1 accuracy, except for bands attributed

to harmonics of the ν4 mode. The quality of the calculated wave numbers for this mode

deteriorates with the largest threshold. We anticipate that this has to do with the prob-

lem, noticed above, of the Taylor series expansion of the NRT potential. The HO basis set

probe already too much of the pathological region of the PES expansion with Z=19318

cm−1 . However, the possible discrepancies in high energy vibrational states used in the

perturbation series of the effective Hamiltonians will not be further discussed in the

present article since, again, the accuracy of these states is not crucial for our rotational

level calculations. We refer the reader interested in the ab initio calculation of methane

vibrational spectra to the abundant literature on this topics, see refs. [32,33,44,72–77] to

quote a few recent works.
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4.2.2 Convergence of the rotational calculations

The convergence of the third order of generalized Rayleigh-Schrödinger perturbation has

been assessed with respect to the threshold on the number of eigenstates of H0 used

to truncate the series in the expression of second and third order corrective terms. Not

surprisingly, the rate of convergence decreases as J increases. However, in Tab. 2, for µ

Taylor-expanded to fourth order in H1, the calculation with summation over 16863 wave

functions (all states up to wave number of about 14851.5 cm−1 above ZPE included)

shows that summation over 8281 wave functions (all states up to wave number of about

13062.7 cm−1 above ZPE included) allows one to converge four decimal places up to

J = 10.

insert Tab.2 here

For the fifth order µ-expansion, convergence with respect to the maximum value of k1, k2

indices seems to follow the same pattern as for the fourth order µ-expansion. So, we have

limited ourself to summation over 8281 wave functions. Given the expected oscillatory

behaviour of the µ-expansion noticed in [16], we infer that the fourth order µ-expansion

allows one to converge the J = 1 energy levels to 1.5 × 10−4 cm−1 , that is a relative

error of about 1.5× 10−5. The same order of magnitude for the relative error is observed

for the whole range of J-values. Given the accuracy of the electronic calculations, it is

probably not justified to aim at a tighter convergence.

The contribution of the fourth order of generalized Rayleigh-Schrödinger perturbation

is displayed in Tab. 3. It can be appreciated by comparing, in the central part of Tab.3,

the columns ”0“, which is actually a third order calculation, and the column ”4161“,

which displays essentially converged numbers for a fourth order effective Hamiltonian

with truncated sums at ki ≤ 4161. At J = 10, the relative contribution of the fourth

order term is still less than 6× 10−6, so fairly small compared to errors probably arising

from the electronic calculations.

insert Tab.3 here
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The convergence of the spectra with respect to the maximum value of k1, k2, k3 indices

in the fourth order corrective term, Eq.(26), is faster than for the lower order terms, as

expected: four decimal places of the tabulated numbers are essentially converged when

summing over only 2085 vibrational eigenfunctions with respect to the larger calculation,

where summation is performed over 4160 eigenfunctions. So, our best converged number

would be the last column, reporting a calculation with µ expanded at the fifth order and

combining a summation truncation threshold of 8282 up to third order, and a threshold

of 4161 at fourth order. However, our best match with empirical energy levels (reported

in Tab.4) would occur for a fourth order perturbation calculation with µ expanded at

the fourth order.

4.3 Contact Transformations: truncation, ordering and convergence of effective rota-

tional Hamiltonian

After having expanded the PES U(Qk) and the reciprocal inertia tensor µ(Qk) in the

Taylor series of normal coordinates Qk the full vibration-rotation Hamiltonian, Eq. (1),

is represented as a sum of elementary terms H(X, Y ) =
∑
i,j XiYj, each term being

a product of a vibrational operator of the form Xi = {Ci
jk...rt...QjQk...PrPt...} and of

a rotational operator Yj ∈ {1,Πα,ΠβΠγ, ...}. Following the previously developed CT-

algorithm [40] these terms are first converted to a “canonical representation” H(X, Y ) =∑
iX
′
iY
′
i based on products of hermitian or anti-hermitian combinations X ′i = V θ,Γ

nm of

creation and annihilation operators (a+
1 )n1(a+

2 )n2 ...(a1)m1(a2)m2 ... for vibration normal

modes and symmetrized combinations Y ′j = Rθ,Γ
k1,k2,k3

of angular momentum operators.

Here Γ stands for a symmetry type and θ for the hermiticity index. The definition

and properties of these elementary operators can be found in [40]. The vector indices

n = (n1, n2, · · · ) and m = (m1,m2, · · · ) correspond to powers of vibration operators and

indices k1, k2, k3 correspond to powers of body-fixed Eckart frame ladder components

Π+,Π−,Πz of the total angular momentum. The transformation from operators expressed

in terms of normal coordinates and conjugate momenta to symmetry-adapted vibrational
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operators, V θ,Γ
nm , expressed in terms of creation and annihilation operators, as well as the

transformation from operators expressed in terms of angular momentum operators to

symmetry-adapted rotational operators, Rθ,Γ
k1,k2,k3

, expressed in terms of ladder operators

are performed by following the technique described by Rey et al. [53] for symmetric

molecules.

In order to perform CT of the full vibration-rotation Hamiltonian and derive an effective

rotational one, we use the fast algorithm implemented in the MOL CT program suite as

described by Tyuterev, Tashkun and co-workers [40,52]. In order to be applicable to gen-

eral systems encountered in molecular spectroscopy, this computer code has been imple-

mented for low-symmetry subgroups of molecular point groups. For instance, it allows a

classification of Hamiltonian terms based on Cs-symmetry (provided the molecular sym-

metry group contains a subgroup isomorphic to Cs, such as in methane, where Cs ⊂ Td)

and also it allows a complete characterisation of the commutator/anti-commutator al-

gebra for vibrational V θ,Γ
nm and rotational Rθ,Γ

k1,k2,k3
operators [40]. The trade-off of such

a representation is that, for high-symmetry molecules such as methane, it requires a

larger number of Hamiltonian components than a representation which would use the

full symmetry . As an example, the Taylor series expansion of the full rotation-vibration

Hamiltonian for methane contains more than 60000 terms at fourth order and more than

900000 terms at sixth order according to the Amat-Nielsen ordering scheme [45]. Even

though the algorithm of MOL CT based on the exact analytical formulas for all contri-

butions in commutators and anti-commutators
[
V θ,Γ
nm , V

θ′,Γ′

n′m′

]
±

and
[
Rθ,Γ

k , Rθ′,Γ′

k′

]
±

is very

fast, the huge number of combinations of the terms in the Baker-Campbell-Hausdorff

perturbation expansion makes it necessary to choose an optimal selection of the contri-

butions.

There exists many ordering schemes in spectroscopic literature to sort vibration-rotation

contributions expressed in terms of normal-mode operators. The most well-known are

due to Amat-Nielsen [45], Oka [78], Parker-Watson and collaborators [13], but many

other possibilities could be considered to optimize the final accuracy over computational

cost ratio. A given ordering-selection scheme, (which will be called “ansatz” in what
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follows 1 ) depends on the type of terms which are expected to be important in the

effective Hamiltonian.

It is known that, the Wigner theorem of perturbation theory can be extended to the

CT method [8,9]. Consequently, only one S1 generator of CT is required to get a second

order effective Hamiltonian, and two generators S1, S2 are sufficient to compute a fourth

order one. It is also well known, that, at a given order of CT, a fewer number of anhar-

monicity and vibrational Coriolis terms are required for rotational CT calculations than

for vibrational ones [9,13,45]. In this paper we present two ansätze, denoted A1 and A2,

for CT calculations of methane rotational Hamiltonian in the ground vibrational state.

These ordering-selection schemes were found to give optimum accuracy/CPU time ratio

for the 2nd order and 4th order CT respectively.

More precisely, denoting by N(CT) the number of S-generators and by o(CT) the CT

order according to the algorithm as explained in refs. [8,9,40], the A1 ansatz corresponds

to a standard Amat-Nielsen ordering scheme for effective rotational Hamiltonian deriva-

tion at second order: N(CT)=1, o(CT)=2, PES expanded up to cubic terms ∼ K3Q
3 and

reciprocal inertia tensor µ up to quadratic terms ∼ µ2Q
2 in the centrifugal distortion

part µΠΠ with only constant term ∼ µ0 kept in the vibration-rotation Coriolis coupling

operator µπΠ. In the A2 ansatz, higher terms were accounted for: N(CT)=2, o(CT)=4

and the PES was expanded up to quartic terms ∼ K4Q
4. The off-diagonal part of the µ

tensor was expanded up to quadratic terms ∼ µ2Q
2 in the centrifugal distortion operator

and up to linear terms ∼ µ1Q in the the vibration-rotation Coriolis coupling operator

with only constant term ∼ µ0 kept in the pure vibrational Coriolis operator µππ. The

expansion of the diagonal part of the µ tensor was taken into account up to quartic terms

∼< µ4Q
4 > in the centrifugal distortion operator.

The results of our calculations are given in Tab.4. A clear improvement of the agreement

with the levels derived from experiment is observed with increasing order of CT.

1 A similar terminology is often used in electronic structure calculations to denote a set up

corresponding to selected contributions
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4.4 Numerical convergence of the two independent approaches

In Tab. 4, the results of CT(1,2) using A1 scheme, are also compared to those of sec-

ond order generalized perturbation and that of CT(2,4) using A2 scheme with those of

third order generalized perturbation. The first pair corresponds to effective Hamiltoni-

ans including quartic centrifugal distortion effects, while the second pair corresponds

to effective Hamiltonians including up to sextic centrifugal distortion terms. Since the

A2 calculation is limited to a quartic µ-tensor expansion, the generalized perturbation

results presented in the table, are those also obtained with a quartic µ-tensor expansion.

A comparison of sixth order CT with fourth order generalized perturbation has not been

included. However, as we have seen, the corrections with respect to A2 and Pert(3) are

small, at least up to J = 10.

Insert Tab.4 here

Inspecting first the effective quartic rotational Hamiltonian, we see that the one derived

from generalized perturbation is clearly closer to empirical wave numbers than that

obtained from A1 compared to the results of the STDS methane database [79], obtained

with the parameters of [80]. This is not surprising, since the orders of the Hamiltonian

components included in the two methods are not the same. Pert(2) takes into account

many more effects such as the vibrational anharmonicity up to 10th power of normal

coordinates, and a quartic µ-expansion in factor of total angular momentum component

operators, whereas CT(1,2) is limited to cubic anharmonic terms of the PES and a

quadratic µ-expansion only. However, the CT(1,2) calculation was much easier to perform

with respect to Pert(2), since the full vibrational eigenvalue problem did not have to be

solved prior to the effective Hamiltonian derivation.

The results of CT(2,4) using A2 scheme improves greatly with respect to those of CT(1,2)

and becomes of comparable accuracy with those of Pert(3): the differences between the

predicted levels are one order of magnitude (or more at low J-values) smaller than the

differences between the levels obtained from the quartic Hamiltonians. The relative errors
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on sextic Hamiltonian eigenvalue differences are actually of the same order of magnitude

as fourth order perturbative corrections containing octic centrifugal distortion, or as

the relative difference with the empirical results (also obtained from an empirical octic

Hamiltonian), and perhaps smaller than the relative errors on the equilibrium geometry

or the PES force constants.

The differences in columns 5 and 8 of Tab.4 are all positive. Whether this is general or

not, would require further studies. CT results systematically underestimate the empirical

values, as do those of Pert(2), whereas Pert(3) results underestimate the empirical values

up to J = 8, and overestimate them above. This J-dependent variation is probably

related to differences in high order centrigugal distorsion effects which only become

significant at sufficiently high J-values.

5 Conclusion

The construction of effective rotational Hamiltonians and accurate calculations of ro-

tational spectra for polyatomic molecules from ab initio potential energy functions is

known to be quite a challenging issue. Very few studies are available in this field for

molecules having a number of atoms, N ≥ 5. A recent improvement of ab initio elec-

tronic calculations for methane has allowed a precise determination of the molecular

equilibrium geometry and of the ground electronic state PES [33]. The latter has been

used in this work, in a rectilinear normal coordinates representation for the benchmark

calculations of rotational energies up to J = 10.

The main objective of the present study was to compare numerically the two different

approaches together. As far as we are aware, besides our previous works [16,33], only

one theoretical calculation by Wang and Sibert [74] has predicted methane rotational

levels beyond J = 1, and none beyond J = 3. Hence, the importance of this comparison

with the same electronic calculation starting point for the two a priori independent

ro-vibrational theoretical methods that have proved able to reach high J-values.
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The comparison is very satisfactory, because the differences between the predicted rota-

tional spectra are decreasing as the orders of the two methods increase. This important

finding should be ascertained in the future by going to higher orders, i.e. beyond the

comparison of sextic effective rotational Hamiltonians. However, as a matter of fact,

our sextic Hamiltonians give energy levels as close to the empirical levels as they could

be expected to lie, at this order of centrifugal distortion. So, this study confirms the

effectiveness of both approaches to the prediction of rotational spectra of polyatomic

molecules.

Another positive conclusion that can be drawn from this work is that, our two indepen-

dent methods, which is also different from the one used in [33], confirm the quality of

the NRT methane PES for rotational and vibrational spectra predictions.

The computational pitfalls for both methods are completely different, as a result, the

two approaches appear to be complementary. The current implementation of the gen-

eralized perturbation method starts from the full (J = 0)-vibrational Hamiltonian, and

therefore, accounts for fine vibrational effects even at low order of perturbation. Its main

bottlenecks are arguably the slow convergence of the µ-expansion and the necessity to

obtain, and to sum over, a large set of vibrational eigenfunctions. In the CT approach

with the harmonic oscillator zeroth-order Hamiltonian, the advantage is that one can

handle elementary vibration-rotation terms without truncating their matrix representa-

tion, thus, cut-offs for intermediate summations over vibrational quantum numbers are

not required. The limitations are related to the efficiency in handling an exponentially

growing number of Hamiltonian components that one can achieve.

Work in progress to take advantage of the full molecular symmetry within the tensorial

algebra formalism, that is used in some Hamiltonian transformation steps, should alle-

viate this limitation for high-symmetry species such as methane. A similar endeaviour

for the use of non Abelian symmetry in the computer code suite, calculating generalized

perturbation effective Hamiltonians, will be undertaken.
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Appendix A: Convergence with respect to the Taylor expansions of U and µ

in H0

insert Tab.5 here.

Table 5 displays the results of three similar VMFCI calculations (same contraction/truncation

schemes except for a slight difference for order 8 where the initial HO basis for the ν4

mode was limited to quantum number n ≤ 14, instead of n ≤ 16, because high quantum

number HO functions probe a pathological domain of the PES polynomial expansion and

produce unphysical results). The final VCI calculations, truncated on the sum of the en-

ergy of product function components at Z = 14918 cm−1 , have all about 16000 basis

functions. This is enough to converge the ZPE to the tenth of cm−1 and the fundamental

transitions to the cm−1 accuracy. The convergence with PES expansion order in normal

coordinates is slow as already demonstrated in previous studies [66–68]. The µ-tensor is

expanded at order 0 in the three calculations. It is worth noting that the ν3 +ν4 levels of

the octad in italics are not in the experimental order. At order 6 and 10, the A1 level is

found before the E and F1 levels, whereas at order 8 the E level is swapped with the A1

level. Note however, that the two highest tabulated levels are found in the right order,
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in contrast with our previous studies conducted with the Lee, Martin and Taylor PES

[30]. We stopped the present study at order 10, which results already in 21884 terms in

the polynomial expansion. We believe that the tenth order expansion in rectilinear nor-

mal coordinates is a reasonably good approximation to the original PES in curvilinear

coordinates, whose variational treatment [33] is shown in the last column. However, care

should be exercised in the comparison, since in [33] the exact kinetic operator is used,

whereas in the other calculations presented in Tab.5, the µ-tensor is Taylor-expanded to

zeroth order. Also, in [33], a fairly small basis set of 131524 HO product basis functions

was used, whereas for orders 6 and 10, we started the VMFCI scheme with 1512221400

HO product basis functions. Note that, with the exact kinetic operator and the original

NRT PES, Nikitin et al. [33] also found an inversion in the ν3 + ν4 levels.

insert Tab.6 here.

We assume that convergence with respect to PES expansion order is not correlated to

convergence with respect to µ-tensor expansion. So, now, we fix the PES expansion order

to 10 and study the effect of µ-tensor expansion order on energy levels. From order 1

and onwards, the correct order is found for the ν3 + ν4 E, F1 and A1 energy levels. So

although small, Coriolis coupling can determine the ordering of quasi-degenerate levels.

Order 2 results are the same as those of order 4 within a few hundredth of cm−1 for

the tabulated numbers. This accuracy is considered as sufficient for the application of

the generalized Rayleigh-Schrödinger method. The number of Coriolis coupling terms in

our Eckart-Watson Hamiltonians is 5274 at order 2 and 40223 at order 4 of µ-tensor

expansion, so significant computer resource savings can be achieved, with little loss of

accuracy.
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[34] J. P. Champion, G. Pierre and M. Loëte, in Spectroscopy of the Earth’s Atmosphere and

Interstellar Medium, (N.Rao Ed., Academic Press, 1992), p.339.

[35] H. Primas, Rev. Mod. Phys. 35, 710 (1963).

29



[36] I. M. Mills, in Molecular Spectroscopy: Modern Reseach, K. Narahari Rao and C. W.

Mathews, Eds., (Acadmic Press, New York, 1972), pp. 115-140.

[37] C. Camy-Peyret and J. M. Flaud, in Molecular Spectroscopy: Modern Research, 3, 69,

Academic Press, N.Y., (1985).

[38] P. R. Bunker and R. E. Moss, Mol. Phys. 33, 417 (1977).

[39] Vl. G. Tyuterev, in “Symmetry and Perturbation Theory”, New Jersey, World Scientific

Publishing, G. Gaeta(ed) 2002, p. 254.

[40] Vl. G. Tyuterev, S. A. Tashkun and H.Seghir High-Order Contact Transformations:General

Algorithm, Computer Implementation and Triatomic Tests. SPIE, Vol. Nı̈¿1
2 5311, pp164-

175 (2004)

[41] Vl. G. Tyuterev, S. A. Tashkun, M. Rey, A. Nikitin and R. Kochanov to be published

[42] H. H. Nielsen, Phys. Rev. 60, 794 (1941).

[43] K. Sarka and J. Demaison, in Computational Molecular Spectroscopy, J. Wiley, Chichester,

(2000).

[44] X.-G. Wang and E. L. Sibert III, J. Chem. Phys 111, 4510 (1999).

[45] G. Amat, H. H. Nielsen and G. Tarrago. in Rotation-vibration of polyatomic molecules, M.

Dekker, N.Y. (1971).

[46] Vl. G. Tyuterev, V. I. Perevalov and V. I. Starikov, Method of effective operators in the

theory of high-resolution molecular spectra, in Modern Problems of Optics and Spectroscopy,

p279, TGU, Tomsk, (2001) [in Russian].

[47] E. L. Sibert III, J. Chem. Phys 88, 4378 (1988).

[48] V.I. Perevalov, Vl.G.Tyuterev and B.I.Zhilinskii, J.Phys.(Paris) 43, 723-728 (1982).

[49] V.I. Starikov and Vl.G. Tyuterev, Optika i Spectrosc. 51, 268-277 (1981).

[50] D. Sugny and M. Joyeux, J. Chem. Phys 112, 31 (2000).

[51] T. J. Lukka and E. Kauppi, J. Chem. Phys 103, 6586 (1995).

30



[52] J. Lamouroux , S. A.Tashkun and Vl. G. Tyuterev, Chem. Phys. Lett. 452, 225-231 (2008).

[53] M. Rey, A. V. Nikitin and Vl. G. Tyuterev, Mol. Phys. 108, 2121 (2010).
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Table captions

Table 1

Energies in cm−1 of methane vibrational levels for increasing VCI truncation thresholds. In

all calculations, the PES is expanded to 10th order in normal coordinates and the µ-tensor to

second order. irreps.: irreducible representation label, nb.: number of, ZPE: zero point energy.

More digits than significant physically are provided to appreciate numerical convergency. Z is

the truncation threshold (in cm−1) as explained in the text.

Table 2

Rotational energy levels in cm−1 at order 3 of generalized perturbation theory. The convergence

of rotational levels of methane vibrational ground state, (the J = 0 level is set to 0 cm−1 ), is

displayed for different µ-matrix Taylor expansion orders in normal coordinates and with respect

to different truncation thresholds on the allowed values for the indices k1, k2 of vibrational wave

functions appearing in Eqs. (24) and (25)..

Table 3

Rotational energy levels in cm−1 at order 4 of generalized perturbation theory. The convergence

of rotational levels of methane vibrational ground state is displayed with respect to different

truncation thresholds on the allowed values for the indices k1, k2, k3 of vibrational wave func-

tions appearing in Eqs. (24), (25) and (26). The µ-matrix is expanded at order 5 in normal

coordinates in all calculations. The column “max k in E(4) = 0” corresponds actually to the

third order of perturbation theory, since there is no term in the sums of E(4)..
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Table 4

Comparison of rotational levels (in cm−1) given by generalized perturbation and contact trans-

formation theories. Notation CT(N,M) stands for N contact transformations developed up to

order M. The associated ordering schemes (”ansätze”) are specified in sect. 4.3. Order two

of generalized perturbation theory, Pert(2) and CT(1,2) calculations give effective rotational

Hamiltonians for methane vibrational ground state, Hrot, going up to fourth power in com-

ponents of the total angular momentum, Π. Order three of generalized perturbation theory,

Pert(3) and CT(2,4) calculations give an Hrot going up to sixth power in components of Π.

Generalized perturbation calculations were performed with µ developed to the fourth power

since this is more comparable to CT(2,4) and maximum k-value of 16864, to insure convergency.

Empirical values from the STDS database [79], with the parameters of Roche and Champion

[80] obtained from the fit of experimental spectra are provided for comparison..

Table 5

Energies in cm−1 of methane vibrational levels for increasing PES expansion orders in rectilinear

normal coordinates. In all VMFCI calculations, the µ-tensor is expanded to zeroth order, and

the VCI truncation thresholds of the last step is 14918 cm−1 . NRT refers to the variational

calculation of ref. [33] for the original PES in curvilinear coordinates. Abbreviations as in Tab.

1. Levels not in the experimental order are italicised.

Table 6

Energies in cm−1 of methane vibrational levels for increasing µ-expansion orders. In all calcu-

lations, the PES is expanded to 10th order, and the VCI truncation thresholds are all equal to

14918 cm−1 giving about 16000 basis functions in this last VMFCI step. Abbreviations as in

Tab. 1. Levels not in the experimental order are italicised.
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Energies in cm−1 of the vibrational levels of methane

for increasing VCI truncation thresholds

Assignment irreps. Z= 14918 17955 19318 obs

ZPE A1 9703.183153 9703.158167 9703.151888

ν4 F2 1310.884071 1310.701941 1310.683512 1310.761

ν2 E 1533.357656 1533.244456 1533.215238 1533.333

2ν4 A1 2586.723627 2586.190593 2586.023517 2587.043

2ν4 F2 2614.226307 2613.824241 2613.706418 2614.261

2ν4 E 2624.801377 2624.486356 2624.396720 2624.618

ν2 + ν4 F2 2830.167101 2829.825414 2829.760068 2830.316

ν2 + ν4 F1 2846.040115 2845.778627 2845.731981 2846.074

ν1 A1 2916.671492 2916.557698 2916.540868 2916.481

ν3 F2 3019.625077 3019.495883 3019.484118 3019.493

2ν2 A1 3063.474918 3063.265494 3063.257150 3063.646

2ν2 E 3065.029711 3064.830728 3064.822739 3065.141

3ν4 F2 3870.894713 3867.192519 3866.772845 3870.488

3ν4 A1 3909.883837 3907.095415 3906.729045 3909.201

3ν4 F1 3922.273060 3919.957713 3919.724701 3920.510

3ν4 F2 3932.285535 3930.269216 3930.061572 3930.923

ν2 + 2ν4 E 4101.807398 4099.255006 4098.520904 4101.393

ν2 + 2ν4 F1 4129.725405 4127.634887 4127.042967 4128.763

ν2 + 2ν4 A1 4133.601985 4131.860209 4131.385342 4132.861

ν2 + 2ν4 F2 4143.621528 4141.941759 4141.443125 4142.865

ν2 + 2ν4 E 4152.309114 4150.845530 4150.422342 4151.205

ν2 + 2ν4 A2 4163.053460 4161.727155 4161.344455 4161.849

ν1 + ν4 F2 4224.846117 4223.912983 4223.748102 4223.462

ν3 + ν4 F2 4320.648401 4319.634596 4319.416652 4319.212

ν3 + ν4 E 4323.243001 4322.274921 4322.094240 4322.178

ν3 + ν4 F1 4323.243001 4322.820571 4322.635258 4322.590

ν3 + ν4 A1 4323.801743 4322.946229 4322.742605 4322.704

2ν2 + ν4 F2 4348.714881 4347.127873 4346.629221 4348.716

2ν2 + ν4 F1 4364.378640 4363.022261 4362.609191 4363.607

2ν2 + ν4 F2 4379.583223 4378.433870 4378.093749 4378.947

ν1 + ν2 E 4435.983506 4435.280907 4435.106450 4435.120

ν2 + ν3 F1 4538.366726 4537.636977 4537.451003 4537.548

ν2 + ν3 F2 4544.486884 4543.787163 4543.611442 4543.757

3ν2 E 4592.218519 4591.193082 4590.906703 4592.028

3ν2 A2 4595.819982 4594.857697 4594.594324 4595.269

3ν2 A1 4595.960023 4594.981484 4594.711558 4595.503

nb. basis functions 15803 47162 74978
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Rotational energy levels in cm−1 at order 3 of generalized perturbation theory

µ-expansion order 4 5
max k in sums 1052 2086 4161 8282 16864 1052 2086 4161 8282
J irreps.
1 F1 10.48171 10.48163 10.48162 10.48161 10.48161 10.48157 10.48148 10.48147 10.48146
2 E 31.44232 31.44208 31.44204 31.44200 31.44200 31.44190 31.44163 31.44159 31.44155
2 F2 31.44259 31.44235 31.44231 31.44227 31.44227 31.44217 31.44189 31.44185 31.44182
3 F1 62.87618 62.87571 62.87563 62.87556 62.87556 62.87534 62.87480 62.87472 62.87465
3 F2 62.87724 62.87678 62.87670 62.87663 62.87663 62.87641 62.87586 62.87579 62.87571
3 A2 62.87857 62.87811 62.87803 62.87796 62.87796 62.87774 62.87720 62.87712 62.87705
4 A1 104.77351 104.77277 104.77264 104.77252 104.77252 104.77212 104.77122 104.77109 104.77098
4 F1 104.77537 104.77463 104.77450 104.77438 104.77438 104.77399 104.77309 104.77296 104.77284
4 E 104.77670 104.77596 104.77583 104.77572 104.77571 104.77532 104.77442 104.77429 104.77417
4 F2 104.78068 104.77996 104.77983 104.77971 104.77971 104.77932 104.77842 104.77829 104.77817
5 F1 157.12534 157.12430 157.12410 157.12393 157.12392 157.12328 157.12195 157.12175 157.12158
5 F2 157.12892 157.12789 157.12769 157.12752 157.12752 157.12687 157.12554 157.12535 157.12517
5 E 157.13819 157.13719 157.13700 157.13683 157.13682 157.13618 157.13485 157.13466 157.13449
5 F1 157.13991 157.13892 157.13873 157.13856 157.13855 157.13791 157.13658 157.13639 157.13622
6 E 219.91487 219.91353 219.91326 219.91302 219.91301 219.91201 219.91018 219.90991 219.90967
6 F2 219.91645 219.91511 219.91484 219.91460 219.91460 219.91360 219.91176 219.91149 219.91126
6 A2 219.92125 219.91991 219.91964 219.91940 219.91939 219.91839 219.91656 219.91629 219.91606
6 F2 219.93816 219.93691 219.93664 219.93640 219.93639 219.93540 219.93358 219.93331 219.93307
6 F1 219.94266 219.94141 219.94114 219.94091 219.94090 219.93991 219.93809 219.93782 219.93758
6 A1 219.94663 219.94540 219.94513 219.94489 219.94488 219.94390 219.94208 219.94181 219.94157
7 F1 293.12486 293.12327 293.12291 293.12259 293.12258 293.12110 293.11871 293.11834 293.11803
7 F2 293.12842 293.12682 293.12646 293.12615 293.12614 293.12465 293.12226 293.12190 293.12159
7 A2 293.15606 293.15464 293.15428 293.15397 293.15396 293.15249 293.15011 293.14975 293.14944
7 F2 293.16643 293.16499 293.16463 293.16433 293.16432 293.16285 293.16047 293.16011 293.15981
7 E 293.17110 293.17056 293.17020 293.16990 293.16989 293.16842 293.16605 293.16569 293.16538
7 F1 293.18054 293.17914 293.17879 293.17848 293.17847 293.17701 293.17464 293.17428 293.17398
8 A1 376.73286 376.73110 376.73063 376.73024 376.73023 376.72810 376.72509 376.72463 376.72424
8 F1 376.73614 376.73436 376.73390 376.73351 376.73349 376.73136 376.72836 376.72790 376.72751
8 E 376.73807 376.73627 376.73581 376.73542 376.73541 376.73327 376.73027 376.72981 376.72942
8 F2 376.78828 376.78683 376.78637 376.78599 376.78598 376.78386 376.78088 376.78043 376.78004
8 F1 376.80718 376.80566 376.80520 376.80482 376.80480 376.80270 376.79973 376.79927 376.79889
8 E 376.82368 376.82227 376.82181 376.82143 376.82141 376.81932 376.81635 376.81590 376.81552
8 F2 376.82866 376.82725 376.82679 376.82641 376.82640 376.82430 376.82134 376.82089 376.82051
9 F1 470.72000 470.71819 470.71762 470.71715 470.71713 470.71415 470.71049 470.70992 470.70945
9 F2 470.72339 470.72154 470.72096 470.72049 470.72047 470.71749 470.71384 470.71326 470.71279
9 E 470.80110 470.80074 470.80017 470.79971 470.79969 470.79674 470.79312 470.79256 470.79209
9 F1 470.80830 470.80703 470.80646 470.80600 470.80598 470.80304 470.79942 470.79885 470.79839
9 A1 470.83396 470.83250 470.83194 470.83147 470.83146 470.82852 470.82492 470.82435 470.82389
9 F1 470.85800 470.85676 470.85620 470.85574 470.85572 470.85279 470.84920 470.84864 470.84818
9 F2 470.86806 470.86685 470.86628 470.86582 470.86581 470.86288 470.85930 470.85873 470.85827
9 A2 470.87591 470.87473 470.87417 470.87371 470.87369 470.87078 470.86719 470.86663 470.86617
10 E 575.05502 575.05337 575.05267 575.05211 575.05209 575.04802 575.04369 575.04299 575.04243
10 F2 575.05641 575.05474 575.05404 575.05348 575.05346 575.04939 575.04506 575.04436 575.04380
10 A2 575.05942 575.05769 575.05699 575.05643 575.05641 575.05234 575.04801 575.04732 575.04676
10 F2 575.17379 575.17305 575.17236 575.17181 575.17179 575.16776 575.16349 575.16280 575.16225
10 F1 575.18801 575.18720 575.18651 575.18596 575.18594 575.18192 575.17766 575.17697 575.17642
10 A1 575.22662 575.22619 575.22551 575.22496 575.22494 575.22094 575.21669 575.21601 575.21546
10 F1 575.26346 575.26271 575.26202 575.26148 575.26146 575.25747 575.25324 575.25256 575.25201
10 E 575.27559 575.27486 575.27418 575.27364 575.27362 575.26964 575.26541 575.26473 575.26419
10 F2 575.28908 575.28846 575.28778 575.28724 575.28722 575.28324 575.27902 575.27834 575.27780
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Rotational energy levels in cm−1 at order 4 of generalized perturbation theory

max k in E(2) and E(3) 1052 4161 8282
max k in E(4) 1052 0 1052 2086 4161 4161

J irreps.
1 F1 10.48157 10.48147 10.48147 10.48147 10.48147 10.48146
2 E 31.44190 31.44159 31.44158 31.44158 31.44158 31.44155
2 F2 31.44216 31.44185 31.44185 31.44185 31.44185 31.44181
3 F1 62.87532 62.87472 62.87470 62.87470 62.87470 62.87462
3 F2 62.87638 62.87579 62.87576 62.87576 62.87576 62.87569
3 A2 62.87771 62.87712 62.87709 62.87709 62.87709 62.87702
4 A1 104.77206 104.77109 104.77103 104.77103 104.77103 104.77091
4 F1 104.77392 104.77296 104.77289 104.77289 104.77289 104.77277
4 E 104.77525 104.77429 104.77422 104.77422 104.77422 104.77410
4 F2 104.77923 104.77829 104.77821 104.77821 104.77820 104.77809
5 F1 157.12313 157.12175 157.12160 157.12160 157.12160 157.12142
5 F2 157.12672 157.12535 157.12520 157.12519 157.12519 157.12502
5 E 157.13600 157.13466 157.13448 157.13447 157.13447 157.13430
5 F1 157.13772 157.13639 157.13620 157.13620 157.13620 157.13602
6 E 219.91171 219.90991 219.90961 219.90960 219.90960 219.90936
6 F2 219.91330 219.91149 219.91120 219.91119 219.91118 219.91094
6 A2 219.91811 219.91629 219.91601 219.91600 219.91599 219.91575
6 F2 219.93503 219.93331 219.93294 219.93293 219.93293 219.93269
6 F1 219.93953 219.93782 219.93744 219.93744 219.93743 219.93719
6 A1 219.94351 219.94181 219.94142 219.94141 219.94141 219.94117
7 F1 293.12056 293.11834 293.11781 293.11779 293.11778 293.11747
7 F2 293.12412 293.12190 293.12137 293.12136 293.12135 293.12103
7 A2 293.15180 293.14975 293.14906 293.14904 293.14903 293.14872
7 F2 293.16217 293.16011 293.15944 293.15943 293.15941 293.15911
7 E 293.16774 293.16569 293.16501 293.16500 293.16499 293.16468
7 F1 293.17630 293.17428 293.17357 293.17355 293.17354 293.17324
8 A1 376.72718 376.72463 376.72372 376.72369 376.72367 376.72328
8 F1 376.73047 376.72790 376.72700 376.72697 376.72695 376.72656
8 E 376.73240 376.72981 376.72893 376.72890 376.72888 376.72849
8 F2 376.78266 376.78043 376.77923 376.77919 376.77917 376.77879
8 F1 376.80158 376.79927 376.79815 376.79812 376.79810 376.79772
8 E 376.81810 376.81590 376.81468 376.81465 376.81463 376.81425
8 F2 376.82309 376.82089 376.81967 376.81964 376.81962 376.81924
9 F1 470.71271 470.70992 470.70848 470.70843 470.70840 470.70792
9 F2 470.71609 470.71326 470.71187 470.71181 470.71178 470.71131
9 E 470.79479 470.79256 470.79060 470.79054 470.79051 470.79004
9 F1 470.80110 470.79885 470.79691 470.79686 470.79683 470.79636
9 A1 470.82679 470.82435 470.82262 470.82257 470.82254 470.82207
9 F1 470.85085 470.84864 470.84669 470.84664 470.84660 470.84614
9 F2 470.86091 470.85873 470.85676 470.85671 470.85667 470.85621
9 A2 470.86878 470.86663 470.86463 470.86458 470.86454 470.86408
10 E 575.04582 575.04299 575.04080 575.04070 575.04066 575.04010
10 F2 575.04721 575.04436 575.04219 575.04210 575.04205 575.04149
10 A2 575.05023 575.04732 575.04520 575.04511 575.04507 575.04451
10 F2 575.16472 575.16280 575.15975 575.15966 575.15961 575.15906
10 F1 575.17895 575.17697 575.17400 575.17390 575.17385 575.17330
10 A1 575.21760 575.21601 575.21267 575.21257 575.21251 575.21197
10 F1 575.25448 575.25256 575.24957 575.24947 575.24942 575.24887
10 E 575.26662 575.26473 575.26171 575.26162 575.26156 575.26102
10 F2 575.28013 575.27834 575.27523 575.27513 575.27508 575.27454
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Comparison of rotational levels (in cm−1) given by generalized perturbation and contact transformation theories

Hrot up to Π(4) Hrot up to Π(6)

J irreps. Pert(2) CT(1,2) Pert(2)-CT(1,2) Pert(3) CT(2,4) Pert(3)-CT(2,4) Empirical
1 F1 10.48162 10.48027 0.00135 10.48161 10.48158 0.00003 10.48165
2 E 31.44202 31.43807 0.00395 31.44200 31.44191 0.00009 31.44212
2 F2 31.44228 31.43832 0.00396 31.44227 31.44217 0.00010 31.44239
3 F1 62.87555 62.86793 0.00762 62.87556 62.87537 0.00019 62.87578
3 F2 62.87658 62.86893 0.00765 62.87663 62.87643 0.00020 62.87684
3 A2 62.87786 62.87018 0.00768 62.87796 62.87776 0.00020 62.87817
4 A1 104.77244 104.76035 0.01209 104.77252 104.77220 0.00032 104.77284
4 F1 104.77424 104.76210 0.01214 104.77438 104.77406 0.00032 104.77470
4 E 104.77552 104.76336 0.01216 104.77571 104.77538 0.00033 104.77603
4 F2 104.77937 104.76711 0.01226 104.77971 104.77935 0.00036 104.78001
5 F1 157.12355 157.10652 0.01703 157.12392 157.12344 0.00048 157.12434
5 F2 157.12702 157.10990 0.01712 157.12752 157.12702 0.00050 157.12793
5 E 157.13600 157.11867 0.01733 157.13682 157.13627 0.00055 157.13719
5 F1 157.13767 157.12029 0.01738 157.13855 157.13799 0.00056 157.13892
6 E 219.91204 219.89009 0.02195 219.91301 219.91231 0.00070 219.91346
6 F2 219.91357 219.89158 0.02199 219.91460 219.91389 0.00071 219.91505
6 A2 219.91820 219.89610 0.02210 219.91939 219.91868 0.00071 219.91985
6 F2 219.93464 219.91214 0.02250 219.93639 219.93557 0.00082 219.93677
6 F1 219.93899 219.91639 0.02260 219.94090 219.94005 0.00085 219.94126
6 A1 219.94284 219.92015 0.02269 219.94488 219.94402 0.00086 219.94523
7 F1 293.12046 293.09415 0.02631 293.12258 293.12160 0.00098 293.12299
7 F2 293.12389 293.09750 0.02639 293.12614 293.12515 0.00099 293.12655
7 A2 293.15084 293.12381 0.02703 293.15396 293.15276 0.00120 293.15420
7 F2 293.16085 293.13358 0.02727 293.16432 293.16311 0.00121 293.16457
7 E 293.16624 293.13884 0.02740 293.16989 293.16867 0.00122 293.17013
7 F1 293.17455 293.14695 0.02760 293.17847 293.17720 0.00127 293.17868
8 A1 376.72607 376.69667 0.02940 376.73023 376.72886 0.00137 376.73044
8 F1 376.72923 376.69976 0.02947 376.73349 376.73214 0.00135 376.73372
8 E 376.73107 376.70156 0.02951 376.73541 376.73406 0.00135 376.73565
8 F2 376.78015 376.74945 0.03070 376.78598 376.78422 0.00176 376.78587
8 F1 376.79838 376.76724 0.03114 376.80480 376.80309 0.00171 376.80478
8 E 376.81450 376.78297 0.03153 376.82141 376.81958 0.00183 376.82129
8 F2 376.81933 376.78769 0.03164 376.82640 376.82455 0.00185 376.82627
9 F1 470.70936 470.67877 0.03059 470.71713 470.71525 0.00188 470.71696
9 F2 470.71259 470.68192 0.03067 470.72047 470.71863 0.00184 470.72034
9 E 470.78964 470.75711 0.03253 470.79969 470.79717 0.00252 470.79897
9 F1 470.79574 470.76307 0.03267 470.80598 470.80347 0.00251 470.80528
9 A1 470.82044 470.78717 0.03327 470.83146 470.82912 0.00234 470.83096
9 F1 470.84404 470.81021 0.03383 470.85572 470.85313 0.00259 470.85500
9 F2 470.85384 470.81977 0.03407 470.86581 470.86317 0.00264 470.86506
9 A2 470.86151 470.82725 0.03426 470.87369 470.87102 0.00267 470.87292
10 E 575.03852 575.00957 0.02895 575.05209 575.04952 0.00257 575.05127
10 F2 575.03985 575.01086 0.02899 575.05346 575.05091 0.00255 575.05266
10 A2 575.04271 575.01366 0.02905 575.05641 575.05392 0.00249 575.05567
10 F2 575.15519 575.12343 0.03176 575.17179 575.16821 0.00358 575.17008
10 F1 575.16895 575.13686 0.03209 575.18594 575.18242 0.00352 575.18430
10 A1 575.20699 575.17398 0.03301 575.22494 575.22101 0.00393 575.22292
10 F1 575.24246 575.20860 0.03386 575.26146 575.25782 0.00364 575.25978
10 E 575.25430 575.22015 0.03415 575.27362 575.26994 0.00368 575.27192
10 F2 575.26755 575.23309 0.03446 575.28722 575.28343 0.00379 575.28542
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Energies in cm−1 of the vibrational levels of methane

for increasing PES expansion order in rectilinear normal coordinates

Assignment irreps. ord 6 ord 8 ord 10 NRT

ZPE A1 9702.226768 9703.245519 9703.098960 9703.3981

ν4 F2 1309.525446 1311.427855 1310.927299 1310.761

ν2 E 1532.468199 1534.053661 1533.438473 1533.332

2ν4 A1 2580.717572 2589.839545 2586.412638 2587.117

2ν4 F2 2609.953143 2615.686895 2614.130234 2614.240

2ν4 E 2621.928428 2626.416225 2624.863233 2624.718

ν2 + ν4 F2 2826.362611 2832.816297 2829.928258 2830.477

ν2 + ν4 F1 2843.343893 2847.729869 2846.116077 2846.040

ν1 A1 2915.547514 2916.520745 2916.639327 2916.483

ν3 F2 3019.467966 3020.215269 3020.187468 3019.497

2ν2 A1 3060.822889 3065.989962 3063.557572 3063.792

2ν2 E 3062.911523 3066.867957 3065.132466 3065.168

3ν4 F2 3859.063144 3879.029093 3870.195501 3870.757

3ν4 A1 3900.825363 3913.109308 3909.600258 3909.184

3ν4 F1 3915.273081 3924.989944 3921.990831 3920.529

3ν4 F2 3926.272865 3935.464430 3932.016176 3931.220

ν2 + 2ν4 E 4092.419103 4110.851729 4101.136404 4101.782

ν2 + 2ν4 F1 4121.768210 4135.250256 4129.009970 4129.004

ν2 + 2ν4 A1 4126.761228 4139.980283 4133.104853 4133.379

ν2 + 2ν4 F2 4136.874475 4147.718981 4143.221974 4142.929

ν2 + 2ν4 E 4146.910246 4155.888698 4152.016006 4151.384

ν2 + 2ν4 A2 4158.601906 4166.080415 4163.048539 4161.953

ν1 + ν4 F2 4220.885998 4225.296088 4224.945071 4223.629

ν3 + ν4 F2 4318.582645 4322.060844 4321.654303 4319.372

ν3 + ν4 E 4321.640373 4325.557407 4324.439805 4322.669

ν3 + ν4 F1 4322.248522 4325.217615 4324.854518 4322.661

ν3 + ν4 A1 4320.681606 4325.215955 4323.958867 4323.031

2ν2 + ν4 F2 4341.955740 4356.378038 4348.200305 4349.131

2ν2 + ν4 F1 4358.834555 4368.672905 4363.915891 4363.833

2ν2 + ν4 F2 4375.015924 4383.510238 4379.587204 4379.076

ν1 + ν2 E 4433.471555 4436.752603 4435.999202 4435.220

ν2 + ν3 F1 4537.378076 4540.417969 4539.559415 4537.625

ν2 + ν3 F2 4542.942703 4546.544470 4545.260400 4543.940

3ν2 E 4587.592579 4597.792383 4592.239851 4592.426

3ν2 A2 4592.275444 4599.341362 4595.889548 4595.377

3ν2 A1 4592.384566 4599.650204 4596.028056 4595.664

nb. basis functions 16086 16202 15809

nb. PES terms 1160 5696 21884
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Energies in cm−1 of the vibrational levels of methane

for increasing µ-expansion order

Assignment irreps. ord 0 ord 1 ord 2 ord 4

ZPE A1 9703.098960 9703.185496 9703.183153 9703.184993

ν4 F2 1310.927299 1310.753844 1310.884071 1310.882416

ν2 E 1533.438473 1533.278814 1533.357656 1533.356351

2ν4 A1 2586.412638 2586.507977 2586.723627 2586.729369

2ν4 F2 2614.130234 2613.927557 2614.226307 2614.226072

2ν4 E 2624.863233 2624.447363 2624.801377 2624.797887

ν2 + ν4 F2 2829.928258 2829.946722 2830.167101 2830.169972

ν2 + ν4 F1 2846.116077 2845.736709 2846.040115 2846.036894

ν1 A1 2916.639327 2916.664325 2916.671492 2916.672933

ν3 F2 3020.187468 3019.490741 3019.625077 3019.614050

2ν2 A1 3063.557572 3063.302664 3063.474918 3063.473842

2ν2 E 3065.132466 3064.819023 3065.029711 3065.026585

3ν4 F2 3870.195501 3870.492710 3870.894713 3870.910306

3ν4 A1 3909.600258 3909.403775 3909.883837 3909.886014

3ν4 F1 3921.990831 3921.716320 3922.273060 3922.276211

3ν4 F2 3932.016176 3931.652683 3932.285535 3932.287769

ν2 + 2ν4 E 4101.136404 4101.467830 4101.807398 4101.819023

ν2 + 2ν4 F1 4129.009970 4129.248500 4129.725405 4129.734759

ν2 + 2ν4 A1 4133.104853 4133.109290 4133.601985 4133.607444

ν2 + 2ν4 F2 4143.221974 4143.081860 4143.621528 4143.625496

ν2 + 2ν4 E 4152.016006 4151.746837 4152.309114 4152.312282

ν2 + 2ν4 A2 4163.048539 4162.384095 4163.053460 4163.048908

ν1 + ν4 F2 4224.945071 4224.610686 4224.846117 4224.839439

ν3 + ν4 F2 4321.654303 4320.273893 4320.648401 4320.625937

ν3 + ν4 E 4324.439805 4322.855425 4323.243001 4323.216368

ν3 + ν4 F1 4324.854518 4323.408556 4323.801743 4323.777575

ν3 + ν4 A1 4323.958867 4323.674256 4323.807826 4323.805353

2ν2 + ν4 F2 4348.200305 4348.361911 4348.714881 4348.722510

2ν2 + ν4 F1 4363.915891 4363.912331 4364.378640 4364.384372

2ν2 + ν4 F2 4379.587204 4379.071591 4379.583223 4379.579519

ν1 + ν2 E 4435.999202 4435.823270 4435.983506 4435.981964

ν2 + ν3 F1 4539.559415 4538.039894 4538.366726 4538.341582

ν2 + ν3 F2 4545.260400 4544.220450 4544.486884 4544.468304

3ν2 E 4592.239851 4591.898737 4592.218519 4592.217029

3ν2 A2 4595.889548 4595.424580 4595.819982 4595.815341

3ν2 A1 4596.028056 4595.564726 4595.960023 4595.954949

nb. basis functions 15809 15812 15803 15809

nb. Coriolis terms in H0 282 1458 5274 40223
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