

La formule de Hasse pour la fonction zêta d'Arakawa-Kaneko

Marc-Antoine Coppo

▶ To cite this version:

Marc-Antoine Coppo. La formule de Hasse pour la fonction zêta d'Arakawa-Kaneko. 2011. hal-00499548v5

HAL Id: hal-00499548 https://hal.univ-cotedazur.fr/hal-00499548v5

Preprint submitted on 30 Oct 2011 (v5), last revised 22 Dec 2011 (v9)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

La Formule de Hasse pour la fonction zêta d'Arakawa-Keneko

Marc-Antoine Coppo Université Nice-Sophia Antipolis Laboratoire J.A. Dieudonné Parc Valrose F-06108 Nice Cedex 2

Marc-Antoine.COPPO@unice.fr

Article d'exposition pour *La Gazette* 2011

Résumé

Dans cet article, on présente une identité qui étend naturellement la classique formule de Hasse pour la fonction zêta de Riemann à la fonction zêta d'Arakawa-Kaneko. On montre comment une nouvelle interprétation d'une formule sommatoire d'Ohno permet d'en déduire d'intéressantes relations entre les sommes d'Euler.

1 Introduction

Il est bien connu (cf. [8]) que la fonction ζ de Riemann peut être représentée par la transformée de Mellin normalisée

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} t^{s-1} \frac{e^{-t}}{1 - e^{-t}} dt$$
 pour $\Re(s) > 1$.

Plus généralement, il est naturel de considérer pour tout entier $k \geq 1$ la fonction ξ_k définie par la représentation

$$\xi_k(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} t^{s-1} \frac{e^{-t}}{1 - e^{-t}} \operatorname{Li}_k(1 - e^{-t}) dt \quad \text{pour } \Re(s) > 0,$$

avec

$$\text{Li}_k(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^k} \quad (|z| < 1).$$

On montre par une méthode standard pour les transformées de Mellin normalisées (cf. [1], [4], [8]) que la fonction ξ_k se prolonge analytiquement dans le plan complexe en une fonction entière de s. Dans le cas le plus simple k = 1, $\xi_1(s)$ n'est autre que $s\zeta(s+1)$.

On montre par des méthodes élémentaires (cf. Proposition 3) que les valeurs prises par la fonction ξ_k sur les entiers positifs admettent l'expression

$$\xi_k(m+1) = \sum_{n=1}^{\infty} \frac{1}{n^{k+1}} P_m(H_n, H_n^{(2)}, \dots, H_n^{(m)}), \quad m = 0, 1, 2, \dots$$

où $P_m(x_1,\ldots,x_m)$ désigne le m-ième polynôme de Bell modifié défini par la fonction génératrice

$$\exp(\sum_{k=1}^{\infty} x_k \frac{z^k}{k}) = 1 + \sum_{m=1}^{\infty} P_m(x_1, \dots, x_m) z^m,$$

et où $H_n = H_n^{(1)}, H_n^{(2)}, \dots, H_n^{(m)}$ sont les nombres harmoniques généralisés

$$H_n^{(m)} = \sum_{j=1}^n \frac{1}{j^m} \,.$$

Nous appelons cette identité la formule de Hasse étendue parce qu'elle prolonge naturellement une formule classique pour les valeurs de ζ dont l'origine remonte à Hasse ¹. Dans le cas particulier k=m=1, on retrouve la jolie formule d'Euler :

$$\xi_1(2) = \sum_{n=1}^{\infty} \frac{H_n}{n^2} = 2\zeta(3).$$

L'intérêt principal de la formule de Hasse étendue est d'engendrer une vaste classe de relations entre les sommes d'Euler (cf. [3]). Il découle en effet d'une formule sommatoire d'Ohno (cf. [7]) la relation

$$\xi_{k-1}(1) + \xi_{k-2}(2) + \dots + \xi_2(k-2) = (1-2^{2-k})\xi_1(k-1)$$
 pour $k \ge 4$,

relation qui, combinée avec la formule de Hasse, peut se traduire par l'identité

$$\sum_{m=1}^{k-3} \sum_{n=1}^{\infty} \frac{1}{n^{k-m}} P_m(H_n, H_n^{(2)}, \dots, H_n^{(m)}) + (2^{2-k} + \frac{2-k}{k-1}) \sum_{n=1}^{\infty} \frac{1}{n^2} P_{k-2}(H_n, H_n^{(2)}, \dots, H_n^{(k-2)}) = 0 \quad \text{pour } k \ge 4.$$

En appliquant la formule précédente dans les cas les plus simples k=4 et k=5, on obtient respectivement les identités

$$\sum_{n=1}^{\infty} \frac{H_n}{n^3} - \frac{5}{24} \sum_{n=1}^{\infty} \frac{(H_n)^2}{n^2} - \frac{5}{24} \sum_{n=1}^{\infty} \frac{H_n^{(2)}}{n^2} = 0,$$

^{1.} Les polynômes de Bell n'apparaissent pas explicitement dans la formulation originelle de Hasse (cf.[6] formule (5)).

et

$$\sum_{n=1}^{\infty} \frac{H_n}{n^4} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(H_n)^2}{n^3} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{H_n^{(2)}}{n^3} - \frac{5}{48} \sum_{n=1}^{\infty} \frac{(H_n)^3}{n^2} - \frac{5}{16} \sum_{n=1}^{\infty} \frac{H_n H_n^{(2)}}{n^2} - \frac{5}{24} \sum_{n=1}^{\infty} \frac{H_n^{(3)}}{n^2} = 0.$$

2 Polynômes de Bell évalués sur les nombres harmoniques

Définition 1. Les polynômes de Bell modifiés (cf. [2], [5]) sont les polynômes P_m definis pour tout entier naturel m par la fonction génératrice

$$\exp\left(\sum_{k\geq 1} x_k \frac{z^k}{k}\right) = 1 + \sum_{m\geq 1} P_m(x_1, ..., x_m) z^m.$$
 (1)

Une expression explicite de P_m est donnée par

$$P_m(x_1, ..., x_m) = \sum_{k_1 + 2k_2 + 3k_3 + \dots = m} \frac{1}{k_1! k_2! k_3! \dots} \left(\frac{x_1}{1}\right)^{k_1} \left(\frac{x_2}{2}\right)^{k_2} \left(\frac{x_3}{3}\right)^{k_3} \dots$$

On peut également calculer récursivement les P_m au moyen de la relation $P_0=1$ et

$$mP_m(x_1,\ldots,x_m) = \sum_{k=1}^m x_k P_{m-k}(x_1,\ldots,x_{m-k}) \quad (m \ge 1).$$

Proposition 1. Pour tout entier naturel m et tout entier $n \ge 1$, on a l'identité

$$\int_0^{+\infty} e^{-t} (1 - e^{-t})^{n-1} \frac{t^m}{m!} dt = \frac{P_m(H_n, \dots, H_n^{(m)})}{n},$$
 (2)

avec

$$H_n^{(m)} = \sum_{j=1}^n \frac{1}{j^m}$$
 et $H_n = H_n^{(1)}$.

Démonstration. D'une part la classique relation eulérienne (cf. [8])

$$B(x,y) = \int_0^1 u^{x-1} (1-u)^{y-1} du = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)},$$

en substituant $u = e^{-t}$, x = 1 - z et y = n + 1, permet d'obtenir

$$\int_0^{+\infty} e^{-t} (1 - e^{-t})^n e^{tz} dt = \frac{n!}{(1 - z)(2 - z)\dots(n + 1 - z)}.$$

D'autre part, on a aussi

$$\frac{n!}{(1-z)(2-z)\dots(n+1-z)} = \frac{n!}{(n+1)!} \times \prod_{j=0}^{n} (1 - \frac{z}{j+1})^{-1}$$

$$= \frac{1}{(n+1)} \times \exp(-\sum_{j=0}^{n} \log(1 - \frac{z}{j+1}))$$

$$= \frac{1}{(n+1)} \times \exp(\sum_{j=0}^{n} \sum_{k=1}^{\infty} \frac{z^{k}}{k(j+1)^{k}})$$

$$= \frac{1}{(n+1)} \exp(\sum_{k=1}^{\infty} H_{n+1}^{(k)} \frac{z^{k}}{k})$$

$$= \sum_{m=0}^{\infty} \frac{P_{m}(H_{n+1}^{(1)}, \dots, H_{n+1}^{(m)})}{n+1} z^{m} \quad \text{(by (1))}.$$

D'où

$$\int_0^{+\infty} e^{-t} (1 - e^{-t})^{n-1} e^{tz} dt = \sum_{m=0}^{\infty} \frac{P_m(H_n^{(1)}, \dots, H_n^{(m)})}{n} z^m.$$

La formule (2) en resulte par identification du terme en z^m .

Exemple 1. Pour les petites valeurs de m, on a ainsi

$$P_1(H_n) = H_n$$

$$P_2(H_n, H_n^{(2)}) = \frac{(H_n)^2}{2} + \frac{H_n^{(2)}}{2}$$

$$P_3(H_n, H_n^{(2)}, H_n^{(3)}) = \frac{(H_n)^3}{6} + \frac{H_n H_n^{(2)}}{2} + \frac{H_n^{(3)}}{3}$$

$$P_4(H_n, H_n^{(2)}, H_n^{(3)}, H_n^{(4)}) = \frac{(H_n)^4}{24} + \frac{(H_n)^2 H_n^{(2)}}{4} + \frac{(H_n^{(2)})^2}{8} + \frac{H_n H_n^{(3)}}{3} + \frac{H_n^{(4)}}{4}.$$

3 Formule de Hasse pour ξ_k

Proposition 2. Soit

$$F(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} t^{s-1} e^{-t} f(t) dt$$

une transformée de Mellin normalisée avec :

$$f(t) = \sum_{n=1}^{\infty} a_n (1 - e^{-t})^{n-1}$$

On suppose que les coefficients a_n vérifient la condition $|a_n| = O(\frac{1}{n})$. Les propriétés suivantes sont alors vérifiées :

- 1) L'intégrale F(s) converge pour $\Re(s) > 0$.
- 2) Si m est un entier naturel, alors :

$$F(m+1) = \sum_{n=1}^{\infty} a_n \frac{P_m(H_n, H_n^{(2)}, \dots, H_n^{(m)})}{n}$$
(3)

Démonstration. Par hypothèse, il existe une constante C>0 et un entier $N\geq 1$ tels que pour tout $t\geq 0$, on a :

$$\sum_{n=N}^{\infty} |a_n| (1 - e^{-t})^{n-1} \le C \sum_{n=N}^{\infty} \frac{(1 - e^{-t})^{n-1}}{n} \le C \sum_{n=1}^{\infty} \frac{(1 - e^{-t})^{n-1}}{n} = \frac{Ct}{1 - e^{-t}}$$

ce qui assure la convergence de l'intégrale et autorise la permutation des symboles \int et \sum . D'où l'expression

$$F(s) = \sum_{n=1}^{\infty} a_n \int_0^{+\infty} e^{-t} (1 - e^{-t})^{n-1} \frac{t^{s-1}}{\Gamma(s)} dt.$$

En posant s = m+1 dans l'expression précédente, la formule (3) résulte alors de (2).

On applique à présent la proposition précédente avec $a_n = \frac{1}{n^k}$, c'est à dire à la fonction

$$f(t) = \sum_{n=1}^{\infty} \frac{(1 - e^{-t})^{n-1}}{n^k} = \frac{\text{Li}_k (1 - e^{-t})}{1 - e^{-t}},$$

on obtient alors immédiatement le résultat suivant :

Proposition 3 (Formule de Hasse pour ξ_k). Pour $k \geq 1$ et $\Re(s) > 0$, soit

$$\xi_k(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} t^{s-1} \frac{e^{-t}}{1 - e^{-t}} \operatorname{Li}_k(1 - e^{-t}) dt$$

Pour tout entier naturel m, on a

$$\xi_k(m+1) = \sum_{n=1}^{\infty} \frac{1}{n^{k+1}} P_m(H_n, H_n^{(2)}, \dots, H_n^{(m)}).$$
 (4)

En particulier,

$$\xi_k(1) = \sum_{n=1}^{\infty} \frac{1}{n^{k+1}} = \zeta(k+1).$$

Remarque 1. De $\text{Li}_1(z) = -\ln(1-z)$ découlent les égalités

$$\xi_1(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} t^{s-1} \left(\frac{e^{-t}}{1 - e^{-t}}\right) t \, dt = \frac{1}{\Gamma(s)} \int_0^{+\infty} t^s \frac{e^{-t}}{1 - e^{-t}} \, dt = s\zeta(s+1) \, .$$

D'où, pour $k \ge 2$,

$$\xi_1(k-1) = (k-1)\zeta(k) = \sum_{n=1}^{\infty} \frac{1}{n^2} P_{k-2}(H_n, H_n^{(2)}, \dots, H_n^{(k-2)}).$$

Exemple 2.

$$\xi_1(2) = 2\zeta(3) = \sum_{n=1}^{\infty} \frac{H_n}{n^2}.$$

Plus généralement, pour $k \geq 2$,

$$\xi_k(2) = \sum_{n=1}^{\infty} \frac{H_n}{n^{k+1}} = \frac{1}{2}(k+3)\zeta(k+2) - \frac{1}{2}\sum_{j=1}^{k-1} \zeta(j+1)\zeta(k+1-j) \quad \text{(Formule d'Euler, cf. [3])} .$$

4 Relation entre les sommes d'Euler

La formule sommatoire d'Ohno (cf. [7] Proposition 2) peut s'exprimer sous la forme suivante :

$$\sum_{m=1}^{k-2} \xi_{k-m}(m) = (1 - 2^{2-k})\xi_1(k-1).$$

Comme

$$\xi_{k-1}(1) = \zeta(k) = \frac{1}{k-1}\xi_1(k-1),$$

ceci peut encore s'écrire

$$\sum_{m=2}^{k-2} \xi_{k-m}(m) + (2^{2-k} + \frac{1}{k-1} - 1)\xi_1(k-1) = 0.$$

De la formule précédente et de (4) découle alors directement l'identité suivante :

Proposition 4 (Formule d'Ohno). Pour $k \geq 4$,

$$\sum_{m=1}^{k-3} \sum_{n=1}^{\infty} \frac{1}{n^{k-m}} P_m(H_n, H_n^{(2)}, \dots, H_n^{(m)}) + (2^{2-k} + \frac{2-k}{k-1}) \sum_{n=1}^{\infty} \frac{1}{n^2} P_{k-2}(H_n, H_n^{(2)}, \dots, H_n^{(k-2)}) = 0 \quad (5)$$

Exemple 3.

$$\begin{split} \sum_{n=1}^{\infty} \frac{H_n}{n^3} - \frac{5}{24} \sum_{n=1}^{\infty} \frac{(H_n)^2}{n^2} - \frac{5}{24} \sum_{n=1}^{\infty} \frac{H_n^{(2)}}{n^2} = 0 \,; \\ \sum_{n=1}^{\infty} \frac{H_n}{n^4} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(H_n)^2}{n^3} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{H_n^{(2)}}{n^3} - \frac{5}{48} \sum_{n=1}^{\infty} \frac{(H_n)^3}{n^2} - \frac{5}{16} \sum_{n=1}^{\infty} \frac{H_n H_n^{(2)}}{n^2} - \frac{5}{24} \sum_{n=1}^{\infty} \frac{H_n^{(3)}}{n^2} = 0 \,; \end{split}$$

$$\begin{split} \sum_{n=1}^{\infty} \frac{H_n}{n^5} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{(H_n)^2}{n^4} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4} + \frac{1}{6} \sum_{n=1}^{\infty} \frac{(H_n)^3}{n^3} + \frac{1}{2} \sum_{n=1}^{\infty} \frac{H_n H_n^{(2)}}{n^3} + \frac{1}{3} \sum_{n=1}^{\infty} \frac{H_n^{(3)}}{n^3} \\ - \frac{59}{1920} \sum_{n=1}^{\infty} \frac{(H_n)^4}{n^2} - \frac{59}{320} \sum_{n=1}^{\infty} \frac{(H_n)^2 H_n^{(2)}}{n^2} - \frac{59}{640} \sum_{n=1}^{\infty} \frac{(H_n^{(2)})^2}{n^2} - \frac{59}{240} \sum_{n=1}^{\infty} \frac{H_n H_n^{(3)}}{n^2} \\ - \frac{59}{320} \sum_{n=1}^{\infty} \frac{H_n^{(4)}}{n^2} = 0. \end{split}$$

Références

- [1] T. Arakawa and M. Kaneko, Multiple zeta values, Poly-Bernoulli numbers and related zeta functions, *Nagoya Math. J.* **153** (1999), 189-209.
- [2] X. Chen and W. Chu, Dixon's $F_2(1)$ -series and identities involving harmonic numbers and the Riemann zeta function, *Discrete Math.* **310** (2010), 83-91.
- [3] J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, *The Ramanujan J.* **10** (2005), 51-70.
- [4] M-A. Coppo and B. Candelpergher, The Arakawa-Kaneko Zeta function, The Ramanujan J. 22 (2010), 153-162.
- [5] M-A. Coppo and B. Candelpergher, A new class of identities involving Cauchy numbers, harmonic numbers and zeta values, à paraître dans le *The Ramanujan J.*
- [6] H. Hasse, Ein Summierungsverfahren für die Riemannsche ζ -Reihe, Mathematische Zeitschrift **32** (1930), 458-464.
- [7] Y. Ohno, Sum relations for multiple zeta values, in Zeta functions, Topology, and Quantum Physics, Dev. Math. 14, 131-144, Springer, New York, 2005.
- [8] E. Zeidler, Quantum Field Theory I: Basics in Mathematics and Physics, Springer, Berlin Heidelberg, 2006.