Bernard Candelpergher 
email: bernard.candelpergher@unice.fr
  
Marc-Antoine Coppo 
  
A new class of identities involving Cauchy numbers, harmonic numbers and zeta values

Keywords: Mathematical Subject Classification (2000): 11B83, 11M41, 33B15, 40G99 Cauchy numbers, Bell polynomials, Harmonic numbers, Laplace-Borel transform, Mellin transform, Zeta values, Ramanujan summation, Hermite's formula

Improving an old idea of Hermite, we associate to each natural number k a modified zeta function of order k. The evaluation of the values of these functions F k at positive integers reveals a wide class of identities linking Cauchy numbers, harmonic numbers and zeta values.

Introduction

It has been well known since the second-half of the 19th century that the Riemann zeta function may be represented by the (normalized) Mellin transform (cf. [START_REF] Zeidler | Quantum Field Theory I : Basics in Mathematics and Physics[END_REF])

ζ(s) = 1 Γ(s) +∞ 0 t s-1 e -t
1 -e -t dt for (s) > 1 , and from late works of Hermite (cf. [START_REF] Hermite | Extrait de quelques lettres de M. Ch. Hermite à M. S. Pincherle[END_REF]) that one has also

ζ(s) - 1 s -1 = 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t ∞ n=1 λ n n! (1 -e -t ) n dt for (s) ≥ 1 ,
where λ 1 = 1 2 and λ n+1 = 1 0

x(1 -x) • • • (n -x) dx are the (non-alternating) Cauchy numbers 1 . Improving Hermite's idea, one may, more generally, consider Mellin transforms of type

F (s) = 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t f (1 -e -t ) dt with f (z) = ∞ n=1 ω n z n n k
for suitable sequences (ω n ) n≥1 of rational numbers. The simplest interesting case ω n = 1 corresponds to the Arakawa-Kaneko zeta function and has been studied extensively in [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF]. In this article, we investigate the case ω n = λ n n! , i.e., we study the function

F k (s) = 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t f k (1 -e -t ) dt with f k (z) = ∞ n=1 λ n n! z n n k (k = 0, 1, 2, . . . ),
which is a priori defined in the half-plane (s) ≥ 1 but analytically continues in the whole complex s-plane (Theorem 7). We call this function F k the modified zeta function of order k. An evaluation by two different methods of the values of F k at positive integers q leads to a new class of identities linking Cauchy numbers, harmonic numbers and zeta values. In the case k = 0, Hermite's formula for ζ (cf. [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz[END_REF]) is regained, i.e.,

F 0 (q) = ζ(q) - 1 q -1 = ∞ n=1
λ n n!n P q-1 (H (1) n , H (2) n , . . . , H (q-1)

n ) ,
where the polynomials P m are the modified Bell polynomials defined by the generating function exp

∞ k=1 x k z k k = ∞ m=0 P m (x 1 , • • • , x m ) z m ,
evaluated at harmonic numbers H (m) n = n j=1 1 j m . In the simplest higher case k = 1, this extension of Hermite's formula leads to the following new relation (Theorem 10):

F 1 (q) = ∞ n=1
λ n n!n 2 P q-1 (H n , H (2) n , . . . , H (q-1)

n ) = ∞ n=1 log(n + 1) n q + γζ(q) + ζ(q + 1) - ∞ n=1 H n n q - q-1 k=1 1 k ∞ n=1 1 (n + 1) k n q-k ,
where

H n = H (1)
n , and γ = lim n→∞ (H n -log n) is the Euler-Mascheroni constant.

For example, for q = 2, since P 1 (H n ) = H n and ∞ n=1 H n n 2 = 2ζ(3) (cf. [START_REF] Choi | Explicit evaluation of Euler and related sums[END_REF], [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz[END_REF]), then the previous relation may be written

F 1 (2) = ∞ n=1 λ n H n n!n 2 = ∞ n=1 log (n + 1) n 2 + γζ(2) -ζ(3) -1 ,
and this generalizes the known formula

F 0 (2) = ∞ n=1 λ n H n n!n = ζ(2) -1 .
The function F k also has an interesting interpretation in terms of Ramanujan summation (cf. [START_REF] Candelpergher | La sommation de Ramanujan[END_REF]) as underscored by Theorem 11. In particular, one shows the identity

F k (1) = ∞ n=1 λ n n! 1 n k+1 = R n≥1 P k (H n , H (2) n , . . . , H (k) n ) n ,
where, in the right member, R n≥1 denotes the sum (in the sense of Ramanujan) of the divergent series. This raises a kind of reciprocity between F k (1) and F 0 (k + 1).

Preliminaries

The non-alternating Cauchy numbers

Definition 1. The non-alternating Cauchy numbers (cf. [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz[END_REF], [START_REF] Merlini | The Cauchy numbers[END_REF]) are the sequence of (positive) rational numbers (λ n ) n≥1 defined by the exponential generating function

z log(1 -z) + 1 = n≥1 λ n n! z n . ( 1 
)
Dividing by z and setting z = 1 -e -t and t > 0, this relation may be rewritten

1 1 -e -t - 1 t = ∞ n=1 λ n n! (1 -e -t ) n-1 . (2) 
From (1), one may easily deduce the following recursive relation

n j=1 λ j j!(n -j + 1) - 1 n + 1 = 0 for n ≥ 1.
Example 1. The first non-alternating Cauchy numbers are

λ 1 = 1 2 , λ 2 = 1 6 , λ 3 = 1 4 , λ 4 = 19 30 , λ 5 = 9 4 .

The modified Bell polynomials evaluated at harmonic numbers

Definition 2. The modified Bell polynomials (cf. [START_REF] Chen | Dixon's F 2 (1)-series and identities involving harmonic numbers and the Riemann zeta function[END_REF], [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz[END_REF], [START_REF] Flajolet | Mellin Transforms and Asymptotics: finite differences and Rice's integrals[END_REF]) are the polynomials P m defined for all natural numbers m by P 0 = 1 and the generating function

exp   k≥1 x k z k k   = 1 + m≥1 P m (x 1 , ..., x m ) z m . ( 3 
)
The general explicit expression for P m is

P m (x 1 , ..., x m ) = k 1 +2k 2 +3k 3 +•••=m 1 k 1 !k 2 !k 3 ! . . . x 1 1 k 1 x 2 2 k 2 x 3 3 k 3 . . .
One may also compute recursively the polynomials P m by means of the following relation

mP m (x 1 , . . . , x m ) = m k=1 x k P m-k (x 1 , . . . , x m-k ) (m ≥ 1) .
Proposition 1. For all natural numbers m, and each integer n ≥ 1,

+∞ 0 e -t (1 -e -t ) n-1 t m m! dt = P m (H n , . . . , H (m) n ) n , (4) 
with

H (m) n = n j=1 1 j m and H n = H (1) n .
Proof. One starts from the classical Euler relation (cf. [START_REF] Zeidler | Quantum Field Theory I : Basics in Mathematics and Physics[END_REF])

B(a, b) = 1 0 u a-1 (1 -u) b-1 du = Γ(a)Γ(b) Γ(a + b) ,
and substitute u = e -t , a = 1 -z, and b = n + 1; then one obtains

+∞ 0 e -t (1 -e -t ) n e tz dt = n! (1 -z)(2 -z) . . . (n + 1 -z) .
Moreover, one has

n! (1 -z)(2 -z) . . . (n + 1 -z) = n! (n + 1)! × n j=0 (1 - z j + 1 ) -1 = 1 (n + 1) × exp(- n j=0 log(1 - z j + 1 )) = 1 (n + 1) × exp( n j=0 ∞ k=1 z k k(j + 1) k ) = 1 (n + 1) exp( ∞ k=1 H (k) n+1 z k k ) = ∞ m=0 P m (H (1) n+1 , . . . , H (m) n+1 ) n + 1 z m (by (3)).
Thus (4) results by identification of the term in z m .

Example 2. For small values of m, one has

P 1 (H n ) = H n , P 2 (H n , H (2) n ) = (H n ) 2 2 + H (2) n 2 , P 3 (H n , H (2) n , H (3) n ) = (H n ) 3 6 + H n H (2) n 2 + H (3) n 3 .

The Laplace-Borel transformation

We consider the vector space E of complex-valued functions f ∈ C 1 (]0, +∞[) such that for all ε > 0, there exists

C ε > 0 such that |f (t)| ≤ C ε e εt for all t ∈ ]0, +∞[ .
In particular, a function f ∈ E satisfies the following two properties: a) for all x with (x) > 0, t → e -xt f (t) is integrable on ]0, +∞[ , b) for all β with 0 < β < 1, t → |f (t)| 1 t β is integrable on ]0, 1[ . We recall now some basic properties (cf. [START_REF] Schiff | The Laplace transform : theory and applications[END_REF]) of the Laplace transformation in this frame which are appropriate for our purpose. Definition 5. Let f and g be two functions in E. The convolution product f * g of f and g is the function defined for all t > 0 by

(f * g)(t) = t 0 f (u)g(t -u) du .
Proposition 3 (cf. [START_REF] Schiff | The Laplace transform : theory and applications[END_REF]). If f ∈ E and g ∈ E, then f * g ∈ E and

L(f * g) = L(f ) L(g) . ( 5 
)
Hence, if a ∈ E and b ∈ E then ab ∈ E since ab = L( a * b).

Theorem 1. Let a be a function in E. Then the series

n≥1 λ n n! +∞ 0 e -t (1 -e -t ) n-1 a(t) dt
converges and

∞ n=1 λ n n! +∞ 0 e -t (1 -e -t ) n-1 a(t)dt = +∞ 0 ( 1 1 -e -t - 1 t )e -t a(t) dt . ( 6 
)
Proof. By (2)

+∞ 0 ( 1 1 -e -t - 1 t )e -t a(t)dt = +∞ 0 ∞ n=1 λ n n! (1 -e -t ) n-1 e -t a(t) dt .
In the right member, the order of +∞ 0 and ∞ n=1 may be interchanged since

+∞ 0 ∞ n=1 λ n n! (1 -e -t ) n-1 e -t a(t) dt = +∞ 0 ∞ n=1 λ n n! (1 -e -t ) n-1 e -t | a(t)| dt = +∞ 0 ( 1 1 -e -t - 1 t )e -t | a(t)| dt ,
and the convergence of this last integral follows from the assumption that a ∈ E.

Example 3. Let a(x) = 1 x s with (s) ≥ 1. Then a ∈ E and a(t) = t s-1 Γ(s) . Hence ∞ n=1 λ n n! +∞ 0 e -t (1 -e -t ) n-1 t s-1 Γ(s) dt = 1 Γ(s) +∞ 0 e -t ( 1 1 -e -t - 1 t )t s-1 dt =    γ if s = 1, ζ(s) - 1 s -1 if s = 1
where γ refers to the Euler constant. In particular, since

+∞ 0 e -t (1 -e -t ) n-1 dt = 1 n for each integer n ≥ 1 , then γ = ∞ n=1 λ n n! 1 n . 3 The operator D Proposition 4. If a ∈ E, then the integral +∞ 0 e -t (1 -e -t ) x-1 a(t)dt
converges for all x with (x) > 0.

Proof. If a ∈ E and (x) > 0, we may write for t ∈ ]0, +∞[,

e -t (1 -e -t ) x-1 a(t) ≤ e -t e (1-(x))(-log(1-e -t )) | a(t)| .
The convergence when t → +∞ results from the inequality

e -t e (1-(x))(-log(1-e -t )) | a(t)| ≤ e -t 1 -e -t | a(t)| ≤ 2e -t | a(t)| (for t ≥ log 2).
The convergence when t → 0 results from the inequality

e (1-(x))(-log(1-e -t )) ≤    1 if (x) ≥ 1, 1 (1-e -t ) (1-(x)) if 0 < (x) < 1 since the function t → e -t | a(t)| 1 (1 -e -t ) β is integrable at 0 for 0 < β < 1 by the definition of E (note that (1 -e -t ) -β ≤ (kt) -1 for small enough t).
Definition 6. Let a be a function in E. We call D(a) the function defined for all x with (x) > 0 by

D(a)(x) = +∞ 0 e -t (1 -e -t ) x-1 a(t)dt . ( 7 
)
Remark 1. a) By Theorem 1, the series n≥1 λ n n! D(a)(n) converges and its sum is given by formula [START_REF] Choi | Explicit evaluation of Euler and related sums[END_REF].

b) The values of D(a) at positive integers may be computed directly without recourse to a. The development of (1 -e -t ) n by the binomial theorem gives

D(a)(n + 1) = n k=0 (-1) k n k a(k + 1) for all integer n ≥ 0. ( 8 
) Definition 7. We call Λ the C 1 -diffeomorphism of R + defined by Λ(u) = -log(1-e -u ).
In particular, it is important to note that Λ is involutive:

Λ -1 = Λ .
Theorem 2. Let a be a function in E. Then the function D(a) ∈ E and, moreover, verifies the relation

D(a) = a(Λ) , ( 9 
)
where a(Λ) denotes a • Λ.

Proof. The change of variables t = Λ(u) in [START_REF] Coppo | Nouvelles expressions des formules de Hasse et de Hermite pour la fonction zêta d'Hurwitz[END_REF] gives

D(a)(x) = +∞ 0 e -xu a(Λ(u)) du for (x) > 0.
Thus, D(a) = L( a(Λ)). It remains to prove that D(a) ∈ E. One has only to check that the function a(Λ) is in E. This function being in C 1 (]0, +∞[), it suffices to show that for all ε > 0, the function

u → e -εu | a(-log(1 -e -u ))| is bounded on ]0, +∞[. This results from the existence of C ε > 0 such that a(-log(1 -e -u )) ≤ C ε (1 -e -u ) ε for all u ∈ ]0, +∞[ . Example 4. Let a(x) = 1 x s with (s) ≥ 1. Then a(t) = t s-1 Γ(s)
. Thus, by [START_REF] Dilcher | Some q-series identities related to divisors functions[END_REF],

D( 1 x s ) = L Λ s-1 Γ(s) , ( 10 
)
and if s = m + 1 with m a natural number and n ≥ 1, then by (4),

D( 1 x m+1 )(n) = P m (H n , . . . , H (m) n ) n . ( 11 
)
Remark 2. Theorem 2 may be summarized in the following diagram

E D ----→ E   L -1  L E Λ ----→ E
where Λ ( a) = a(Λ). The algebraic properties of D are summed up in the following theorem. Proof. We can write D = LΛ L -1 and Λ is an automorphism of E which verifies Λ = (Λ ) -1 since Λ = Λ -1 . Furthermore,

D( 1 x ) = L(1) = 1 x .

The harmonic product

Our aim is to define the harmonic product of two functions a and b in E as being the unique function f of E such that

D(a) (x).D(b) (x) = D(f ) (x) .
Thus, we have to establish that such a function exists and is unique. In order to do this, we introduce first a Λ-convolution product of two functions in E. Proof. From the definition of the convolution product, one may write

The Λ-convolution product

a(Λ) * ( b(Λ) (t) = t 0 a(Λ(u)) b(Λ(t -u))du .
Now, for all ε > 0, there exists C ε > 0 and

D ε > 0 such that a(-log(1 -e -u )) ≤ C ε (1 -e -u ) ε and b(-log(1 -e -(t-u) )) ≤ D ε (1 -e -(t-u) ) ε for all u ∈ ]0, +∞[ . It follows that ( a(Λ) * b(Λ))(t) ≤ C ε D ε t 0 (1 -e -u ) ε (1 -e -(t-u) ) ε du .
One has also

t 0 (1 -e -u ) ε (1 -e -(t-u) ) ε du = 1 -e -t 1+2ε 1 0 u ε (1 -u) ε 1 (1 -(1 -e -t )u) ε+1 du ≤ 1 -e -t 1+2ε 1 0 1 (1 -(1 -e -t )u) ε+1 du ≤ 1 -e -t 1+2ε e tε -1 (1 -e -t )ε ≤ 1 -e -t 2ε e tε -1 ε ≤ e tε ε .
Hence, (

a(Λ) * b(Λ))(t) ≤ C ε D ε e tε
ε , which proves that this function belongs to E as required. Remark 3. The Λ-convolution product inherits the algebraic properties of the ordinary convolution product, i.e., bilinearity, commutativity, and associativity. This construction may be summarized in the following diagram:

The harmonic product

(a, b) ----→ ( a, b) ----→ ( a(Λ), b(Λ))       a b ← ----a b ← ----a(Λ) * b(Λ)
Remark 4. The harmonic product inherits the properties of the Λ-convolution product: it is bilinear, commutative and associative. Hence, if the numbers C k,l n are defined by

(X + Y -XY ) n = 0≤k≤n 0≤l≤n C k,l n X k Y l ,
then one has the following explicit formula:

(a b)(n + 1) = 0≤k≤n 0≤l≤n C k,l n a(k + 1)b(l + 1) ,
which can be rewritten in the following equivalent form:

(a b)(n + 1) = 0≤l≤k≤n (-1) k-l n k k l a(k + 1)b(n + 1 -l) (n ≥ 0) .
For small values of n, this enables one to compute 1) ,

(a b)(1) = a(1)b(
(a b)(2) = a(2)b(1) + a(1)b(2) -a(2)b(2) , (a b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2) -2a(3)b(2) -2a(2)b(3) + a(3)b(3) .
Theorem 5. Let

1 x k = 1 x 1 x • • • 1 x k (k = 1, 2, 3, • • • ) , where 1 x denotes (improperly) the function x → 1 x .
Then, for all natural numbers m ≥ 0,

1 x (m+1) = D( 1 x m+1 ) .
In particular, for all integers n ≥ 1,

1 x (m+1) (n) = P m (H n , . . . , H (m) n ) n . ( 14 
)
Proof. By (13) we have

D( 1 x m+1 ) = D( 1 x . . . 1 x m+1 ) = D( 1 x ) (m+1) = 1 x (m+1) since D( 1 x ) = 1 x .
Thus, (14) results from [START_REF] Hermite | Extrait de quelques lettres de M. Ch. Hermite à M. S. Pincherle[END_REF].

The harmonic property

The following theorem explains the main reason why the harmonic product is called 'harmonic'.

Theorem 6. Let a ∈ E. Then

1 x a = A(x) x ,
where A denotes the function defined for (x) > 0 by

A(x) = +∞ 0 e -xt -1 e -t -1 e -t a(t)dt .
In particular, for each integer n ≥ 1,

1 x a (n) = A(n) n = 1 n n k=1 a(k) . ( 15 
)
Proof. By the definition of the harmonic product, one has

1 x a = L(1 a) . Now (1 a)(Λ(u)) = (1 * a(Λ))(u) = u 0 a(Λ(v))dv = - Λ(u) +∞ a(t) e -t 1 -e -t dt
(by the change of variables t = Λ(v)). Hence,

(1 a)(u) = +∞ u a(t)
e -t 1 -e -t dt .

Thus, we have

1 x a = +∞ 0 e -xu +∞ u a(t) e -t 1 -e -t dt du = +∞ 0 t 0 e -xu du a(t) e -t 1 -e -t dt = 1 x +∞ 0 (1 -e -xt ) a(t) e -t 1 -e -t dt = A(x) x .
Furthermore, for each integer n ≥ 1, we have

A(n) = +∞ 0 e -nt -1 e -t -1 e -t a(t)dt = n k=1 a(k) .
Example 5.

1 x 1 x = D( 1 x 2 ) = L(Λ) = H(x)
x with H(x) = ψ(x + 1) + γ, ψ denoting the logarithmic derivative of Γ. In particular, for each integer n ≥ 1,

1 x 1 x (n) = H(n) n = H n n .
Example 6. For (s) ≥ 1, 1 x

1 x s = H (s) (x)
x , with

H (s) (x) = 1 Γ(s) +∞ 0 1 -e -xt 1 -e -t e -t t s-1 dt . For each integer n ≥ 1, 1 x 1 x s (n) = H (s) (n) n = H (s) n n = 1 n n m=1 1 m s .
From (15), by induction on k, we deduce the following important corollary.

Corollary 1. For each integer

k ≥ 2, 1 x k a (n) = 1 n   n≥n 1 ≥•••≥n k ≥1 a(n k ) n 1 . . . n k-1   . ( 16 
)
Example 7. Applying (16) with a(x) = 1 x (and k = m), we get

1 x (m+1) (n) = 1 n   n≥n 1 ≥•••≥nm≥1 1 n 1 . . . n m   . ( 17 
)
Hence, it follows from ( 14) and (17) that

P m (H n , H (2) n , . . . , H (m) n ) = n≥n 1 ≥•••≥nm≥1 1 n 1 . . . n m , ( 18 
)
which is a nice reformulation of Dilcher's formula (cf. [START_REF] Boyadzhiev | Harmonic number identities via Euler's transform[END_REF], [START_REF] Dilcher | Some q-series identities related to divisors functions[END_REF]).

5 The modified zeta function F k

Integral representation

Definition 10. For all s ∈ C with (s) ≥ 1 and each natural number k, the modified zeta function of order k is defined by

F k (s) = 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t f k (1 -e -t ) dt with f k (z) = ∞ n=1 λ n n! z n n k . ( 19 
)
Remark 6. By (2) and Example 3, one has

F 0 (s) = ζ(s) - 1 s -1 .
The fact that F k may be represented by a Mellin transform enables us to analytically continue this function outside its half-plane of definition by a standard analytic method (cf. [START_REF] Zeidler | Quantum Field Theory I : Basics in Mathematics and Physics[END_REF] section 6.7). λ n z n n! is equal to 1. Thus 1 is also the radius of convergence of the series ∞ n=1 λ n z n n!n k which defines an analytic function f k in the disc D(0, 1). Hence, the function

g k : t → f k (1 -e -t )
is analytic for all t ∈ C such that 1 -e -t ∈ D(0, 1). Since 1 -e 0 = 0, it follows that g k is analytic in a neighbourhood of 0. Since g k (0) = 0, the function t → g k (t) e -t 1 -e -t is itself analytic in a neighbourhood of 0. It follows that its Mellin transform analytically continues in the complex plane with simple poles at negative integers which are all cancelled by the poles of Γ. Theorem 8. For all s with (s) > 1 and each integer k ≥ 1,

F k (s) = ϑ(k)ζ(s)+ k j=1 (-1) j ϑ(k-j)Z j (s)+(-1) k 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t T k e -t -1 t dt (20) with ϑ(k) = ∞ n=1 λ n n! 1 n k , ( 21 
)
Z j (s) = n>n 1 >n 2 >•••>n j >0 1 n s n 1 n 2 . . . n j , ( 22 
) T f (t) = +∞ t e -u 1 -e -u f (u)du . ( 23 
)
Proof. Formula (20) results from the integral representation (19) and the two following lemmas.

Lemma 1. For all t > 0,

f k (1 -e -t ) = k j=0 (-1) j ϑ(k -j) Λ j (t) j! + (-1) k T k ( e -t -1 t ) ,
where ϑ is defined by (21) and T is the operator defined by (23).

Proof. Let g k (t) = f k (1 -e -t
). The function g k verifies the recursive relation

g k (t) = e -t f k (1 -e -t ) = e -t 1 -e -t f k-1 (1 -e -t ) = e -t 1 -e -t g k-1 (t) . Thus g k (t) = t 0 e -u 1 -e -u g k-1 (u)du = g k (+∞) - +∞ t e -u 1 -e -u g k-1 (u)du with g k (+∞) = f k (1) = ϑ(k).
Thus, one has

g k (t) = ϑ(k) - +∞ t e -u 1 -e -u g k-1 (u)du = ϑ(k) -T (g k-1
) , and a repeated iteration k times of this relation gives

g k (t) = k-1 j=0 ϑ(k -j)(-1) j T j (1) + (-1) k T k (g 0 ) . Now, by (2), g 0 (t) = ∞ n=1 λ n (1 -e -t ) n n! = e -t -1 t + 1 ,
and thus

T k (g 0 ) = T k ( e -t -1 t ) + T k (1) .
Hence 1) and a tauberian theorem), one deduces that

g k (t) = k-1 j=0 ϑ(k -j)(-1) j T j (1) + (-1) k T k (1) + (-1) k T k ( e -t -1 t ) . Since ϑ(0) = ∞ n=1 λ n n! = 1 (by (
g k (t) = k j=0 ϑ(k -j)(-1) j T j (1) + (-1) k T k ( e -t -1 t ) ,
and, now, it remains to prove that

Λ j (t) j! = T j (1) ,
which follows from the recursive relation

Λ j (t) j! = - t +∞ e -u 1 -e -u Λ j-1 (u) (j -1)! du = T Λ j-1 (j -1)! .
Lemma 2. Let Z j (s) be defined by ( 22). Then, for all s ∈ C with (s) > 1,

Z j (s) = 1 Γ(s) +∞ 0 t s-1 e -t
1 -e -t Λ j (t) j! dt .

Proof. From the recursive relation

∂ Λ j (t) j! = Λ j-1 (t) (j -1)! ∂Λ(t) = - e -t 1 -e -t Λ j-1 (t) (j -1)! = - m>0 e -mt Λ j-1 (t) (j -1)! ,
and Λ(t) = n>0 e -nt n , one may check by induction on j that

Λ j (t) j! = n 1 >n 2 >...>n j >0 e -n 1 t n 1 1 n 2 • • • 1 n j .
Furthermore, one has

1 Γ(s) +∞ 0 t s-1 e -N t e -t 1 -e -t dt = n>N 1 n s (for (s) > 1) . Hence 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t Λ j (t) j! dt = n>n 1 >n 2 >•••>n j >0 1 n s 1 n 1 1 n 2 • • • 1 n j = Z j (s) .

Values of F k at integers

Theorem 9. For all s in C with (s) ≥ 1 and each natural number k, then

F k (s) = ∞ n=1 λ n n!n k D 1 x s (n) . ( 24 
)
In particular, for all natural numbers m,

F k (m + 1) = ∞ n=1 λ n n! P m (H n , H (2) 
n , . . . , H

(m) n ) n k+1 . ( 25 
)
Proof. The change of variables t = Λ(u) in (19) enables to write

F k (s) = 1 Γ(s) +∞ 0 f k (e -u )(Λ(u)) s-1 du . Since D( 1 x s ) = L Λ s-1 Γ(s)
, we deduce (24) from this last expression of F k (s). Moreover, by [START_REF] Hermite | Extrait de quelques lettres de M. Ch. Hermite à M. S. Pincherle[END_REF], one also has D(

1 x m+1 )(n) = P m (H n , . . . , H (m) n ) n
, which proves (25).

Corollary 2. Let ϑ(s) be the Dirichlet series defined for (s) > 0 by

ϑ(s) = ∞ n=1 λ n n! 1 n s .
Then for each natural number k,

ϑ(k + 1) = F k (1) . ( 26 
)
Example 8.

F 0 (1) = ∞ n=1 λ n n!n = γ = ϑ(1) , F 0 (2) = ∞ n=1 λ n H n n!n = ζ(2) -1 , F 0 (3) = 1 2 ∞ n=1 λ n H 2 n n!n + 1 2 ∞ n=1 λ n H (2) n n!n = ζ(3) - 1 2 , F 1 (1) = ∞ n=1 λ n n!n 2 = ϑ(2) , F 1 (2) = ∞ n=1 λ n H n n!n 2 , F 1 (3) = 1 2 ∞ n=1 λ n H 2 n n!n 2 + 1 2 ∞ n=1 λ n H (2) n n!n 2 .

Identities linking Cauchy numbers, harmonic numbers and zeta values

Theorem 10. For all integers q ≥ 2,

F 1 (q) = ∞ n=1 λ n n!n 2 P q-1 (H n , H (2) n , . . . , H (q-1) n ) = ∞ n=1 log(n + 1) n q + γζ(q) + ζ(q + 1) - ∞ n=1 H n n q - q-1 k=1 1 k ∞ n=1 1 (n + 1) k n q-k . (27)
Proof. By (20) and (25), one may write (2) n , . . . , H (q-1)

F k (q) = ∞ n=1 λ n n!n k+1 P q-1 (H n , H
n ) = ϑ(k)ζ(q) + k j=1 (-1) j ϑ(k -j)Z j (q) + (-1) k 1 Γ(q) +∞ 0 t q-1 e -t
1 -e -t T k e -t -1 t dt .

(28)

We apply now (28) with k = 1. This gives

F 1 (q) = γζ(q) - n≥1 H n-1 n q + 1 Γ(q) +∞ 0 t q-1 e -t 1 -e -t E 1 (t) dt , with E 1 (t) = -Ei(-t) = +∞ t e -u u du. Thus F 1 (q) = γζ(q) - n≥1 H n n q + ζ(q + 1) + I(q) ,
where

I(q) = 1 Γ(q) +∞ 0 t q-1 e -t 1 -e -t E 1 (t) dt = 1 Γ(q) ∞ n=1 +∞ 0 e -nt t q-1 E 1 (t) dt . Since E 1 (t) = -γ -log t + ∞ n=1 (-1) n-1 n t n n! ,
and -γ -log t = log x x (cf. [START_REF] Schiff | The Laplace transform : theory and applications[END_REF]), then E 1 = log(x+1)

x .

Thus

+∞ 0 e -nt t q-1 E 1 (t) dt = (-1) q-1 log(x + 1)

x (q-1) (n) .
Hence, by a calculation of the (q -1)th derivative, we get

I(q) = (-1) q-1 (q -1)! ∞ n=1 log(x + 1) x (q-1) (n) = ∞ n=1 log(n + 1) n q - q-1 k=1 1 k ∞ n=1 1 (n + 1) k n q-k .
Remark 7. 1) We recall Euler's formula (cf. [START_REF] Choi | Explicit evaluation of Euler and related sums[END_REF])

∞ n=1 H n n q = 1 2 (q + 2)ζ(q + 1) -1 2 q-2 k=1 ζ(k + 1)ζ(q -k) for q > 2, 2ζ (3) 
for q = 2.

2) From

∞ n=1 1 (n + 1)n = 1, and the decomposition

1 (n + 1) k n q-k = 1 (n + 1) k-1 n q-k - 1 (n + 1) k n q-k-1 (0 < k < q) ,
the sum of the series ∞ n=1 1 (n + 1) k n q-k may be expressed as a linear combination of zeta values and integers.

Example 9.

∞ n=1 log (n + 1)

n 2 + γζ(2) -ζ(3) -1 = ∞ n=1 λ n H n n!n 2 , ∞ n=1 log (n + 1) n 3 + γζ(3) - 1 10 ζ(2) 2 - 1 2 ζ(2) = 1 2 ∞ n=1 λ n H 2 n n!n 2 + 1 2 ∞ n=1 λ n H (2) n n!n 2 , ∞ n=1 log (n + 1) n 4 + γζ(4) -2ζ(5) + ζ(2)ζ(3) - 2 3 ζ(3) + 1 3 ζ(2) - 1 2 = 1 6 ∞ n=1 λ n H 3 n n!n 2 + 1 2 ∞ n=1 λ n H n H (2) n n!n 2 + 1 3 ∞ n=1 λ n H (3) n n!n 2 .

Link with the Ramanujan summation

The function F k has strong connections with the Ramanujan summation (cf. [START_REF] Candelpergher | La sommation de Ramanujan[END_REF], [START_REF] Candelpergher | Ramanujan summation and the exponential generating function ∞ k=0 z k k! ζ (-k)[END_REF]).

If a ∈ E, then the series n≥1 a(n) may be written However, this last integral may be divergent at 0. Nevertheless we can renormalize it by removing the singularity at zero. This may be done merely by subtracting the polar part 1 t of 1 1-e -t . From Theorem 1, we know that

+∞ 0 ( 1 1 -e -t - 1 t )e -t a(t)dt = ∞ n=1 λ n n! +∞ 0 e -t (1 -e -t ) n-1 a(t)dt = ∞ n=1 λ n n! D(a) (n) .
This justifies the following definition.

Definition 11. Let a be a function in E = L(E). The Ramanujan sum of the series

n≥1 a(n) is defined by R n≥1 a(n) = +∞ 0 ( 1 1 -e -t - 1 t )e -t a(t)dt = ∞ n=1 λ n n! D(a) (n) . ( 29 
) Lemma 3. Let a and b in E. Then R n≥1 (a b)(n) = ∞ n=1 λ n n! D(a)(n) D(b)(n) . ( 30 
)
Proof. This results directly from ( 12) and (29).

Theorem 11. for all s ∈ C with (s) ≥ 1, one has

F 0 (s) = R n≥1 1 n s and F k (s) = R n≥1 1 x k 1 x s (n) for k ≥ 1 . ( 31 
)
Proof. By ( 24) and (30), taking into account the invariance of 1

x by D, one may write

R n≥1 1 x k 1 x s (n) = ∞ n=1 λ n n! D 1 x k (n)D 1 x s (n) = ∞ n=1 λ n n! 1 x k (n)D 1 x s (n) = ∞ n=1 λ n n!n k D 1 x s (n) = F k (s) .
In particular, by ( 14), one deduces from (31) the following identity.

Corollary 3.

For each natural number k,

F k (1) = ϑ(k + 1) = ∞ n=1 λ n n! 1 n k+1 = R n≥1 P k (H n , H (2) n , . . . , H (k) n ) n . ( 32 
)
Example 10.

ϑ(1) = ∞ n=1 λ n n!n = R n≥1 1 n = γ , ϑ(2) = ∞ n=1 λ n n!n 2 = R n≥1 H n n , ϑ(3) = ∞ n=1 λ n n!n 3 = 1 2 R n≥1 H 2 n n + 1 2 R n≥1 H (2) n n .
Remark 8. Comparing (32) with

F 0 (k + 1) = ∞ n=1 λ n n!n P k (H n , H (2) n , . . . , H (k) n ) ,
one may observe a kind of reciprocity between F k (1) and F 0 (k + 1). This results from the fact that D = D -1 .

Remark 9. In the case q = 1, ( 27) is meaningless since both the series n≥1 log(n + 1) n and n≥1

H n n diverge. However, since

log(x + 1) -(ψ(x + 1) + γ) = +∞ 0 (e -xu -1)( 1 1 -e -u - 1 u )e -u du , it follows that   log(x + 1) x - ψ(x + 1) + γ x   (t) = +∞ t 1 1 -e -u - 1 u e -u du ,
and then one may easily deduce from (29) the relation

R n≥1 log(n + 1) n - R n≥1 H n n = - γ 2 2 ,
which may be rewritten in the following form (cf. Example 10):

R n≥1 log(n + 1) n = ϑ(2) - 1 2 ϑ(1) 2 .

Link with the Arakawa-Kaneko zeta function

For (s) ≥ 1 and k ≥ 1, one can define in an algebraic fashion the function ξ k by

ξ k (s) = ∞ n=1 D 1 x k 1 x s (n) = ∞ n=1 1 n k D 1 x s (n). ( 33 
)
In particular, for all natural numbers m, one has (cf. [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF], Corollary 1) 1 -e -t Li k (1 -e -t ) dt , which is the analogue of (19) (with Li k in place of f k ) and also the original definition of the Arakawa-Kaneko zeta function (cf. [START_REF] Arakawa | Multiple zeta values, Poly-Bernoulli numbers and related zeta functions[END_REF], [START_REF] Coppo | The Arakawa-Kaneko Zeta function[END_REF]). Thus, taking into account the facts that ξ k (1) = ζ(k + 1) and Li 1 (1 -e -t ) = t, and following the same process as in the proof of Theorem 8, one obtains the following analogue of (20): ), we have for positive integers m the nice formula

ξ k (m + 1) = ∞ n=1 1 n k D 1 x m+1 (n) =
F k,ω (m + 1) = ∞ n=1 ω n n k D 1 x m+1 (n) = ∞ n=1 ω n P m (H n , H (2) 
n , . . . , H

(m) n ) n k+1
, which extends (25). However, this formula is more theoretical than practical because of the fast increase in the size of polynomials P m : the number of monomials in P m is equal to the number p(m) of partitions of m, as shown by the explicit expression of the mth modified Bell polynomial.
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 34 Let f be a function in E. The Laplace transform L(f ) of f is defined byL(f )(x) = +∞ 0 e -xt f (t) dt for (x) > 0 .Proposition 2 (cf.[START_REF] Schiff | The Laplace transform : theory and applications[END_REF]). Let E = L(E) be the image ofE under L. If a is a function in E, then a) a is an analytic function of x in the half-plane (x) > 0 , b) a(x) → 0 when (x) → +∞ , c) L : E → E is an isomorphism. Let a ∈ E. TheBorel transform of a is the unique function a ∈ E such that a = L( a). One has the two reciprocal formulas a(t) = 1 2iπ c+i∞ c-i∞ e zt a(z) dz for all c > 0 and t > 0 , and a(x) = +∞ 0 e -xt a(t) dt for (x) > 0 .

Theorem 3 .

 3 The operator D is an automorphism of E which verifies D = D -1 and lets the function x → 1 x invariant.

Proposition 5 .

 5 If a and b are in E, then a(Λ) * b(Λ) ∈ E.

Definition 8 .

 8 Let a and b be two functions in E. The Λ-convolution product a b of a and b is defined by a b = Λ (Λ ( a) * Λ ( b)) , or equivalently (since Λ = (Λ ) -1 ) ( a b)(Λ) = a(Λ) * b(Λ) .

Definition 9 .

 9 Let a and b two functions in E. The harmonic product a b of a and b is defined by a b = L( a b) ∈ E .

Theorem 4 .Remark 5 .

 45 Let a and b be in E. Then, D(a b) = D(a) D(b) , (12) and D(ab) = D(a) D(b) . (13) Proof. One knows from Theorem 2 that D = LΛ L -1 . Hence D(a b) = LΛ L -1 (a b) = LΛ ( a b) = L(Λ ( a) * Λ ( b)) , and it follows from (5) and (9) that L(Λ ( a) * Λ ( b)) = L(Λ ( a))L(Λ ( b)) = D(a) D(b) which proves (12). Moreover, (12) enables us to write D(D(a) D(b)) = D 2 (a) D 2 (b) = ab (since D = D -1 ), and so D(a b) = D 2 (D(a) D(b)) = D(a) D(b)which proves[START_REF] Schiff | The Laplace transform : theory and applications[END_REF]. The values of (a b)(n) may be computed without recourse to a and b. By elementary transformations, it can be shown that (a b)(n + 1) = t-s )(e -t + e -s -e -t e -s ) n a(t) b(s)dtds .

Theorem 7 .

 7 The function F k analytically continues in the whole complex plane as an entire function.Proof. The function z → 1 log(1 -z) + 1 zbeing analytic in the disc D(0, 1) with a singularity at 1, we deduce from (1) that the radius of convergence of the series ∞ n=1

e 1 -

 1 -nt a(t) dt , and a formal permutation of n≥1 and +∞ 0 e -t e -t a(t) dt.

  Li k (e -u )(Λ(u)) s-1 du , and the change of variables t = Λ(u) leads to the integral representation ξ k (s

ξ 1 j=1(- 1 )m 2 , 6 Conclusion

 1126 k+1 (s) = ζ(k+1)ζ(s)+ kj ζ(k+1-j)Z j (s)+(-1) k 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t T k (t)dt .(34) In particular, in the simplest case k = 1, sinceT (t) = +∞ t e -u1 -e -u udu = (34) again gives the formulaξ 2 (s) = ζ(2)ζ(s) -s Arakawa and Kaneko (cf. [1] Theorem 6 (ii)).Most of the general results given for the modified zeta function F k , especially Theorem 7, Theorem 8, and Theorem 9, also apply (with minor adaptations) to a wide class of functions including the Arakawa-Kaneko zeta function ξ k , specifically to the class of functions represented by normalized Mellin transforms of typeF k,ω (s) = 1 Γ(s) +∞ 0 t s-1 e -t 1 -e -t f k,ω (1 -e -t ) dt with ω = (ω n ) n≥1 and f k,ω (z) = ∞ n=1 ω n n k z n .In particular, under the assumption that|ω n | n k = O( 1 n