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Abstract

Improving an old idea of Hermite, we associate to each natural number k a modified
zeta function of order k. The evaluation of the values of these functions Fk at
positive integers reveals a wide class of identities linking Cauchy numbers, harmonic
numbers and zeta values.
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1 Introduction

It is well known since the second-half of the 19th century that the Riemann zeta function
may be represented by the (normalized) Mellin transform

ζ(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
dt for <(s) > 1 ,

and from late works of Hermite (cf. [10]) that one has also

ζ(s)− 1
s− 1

=
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t

( ∞∑
n=1

λn

n!
(1− e−t)n

)
dt for <(s) ≥ 1 ,



where λ1 =
1
2

and λn+1 =
∫ 1

0
x(1 − x) · · · (n − x) dx are the (non-alternating) Cauchy

numbers1.
Improving Hermite’s idea, one may, more generally, consider Mellin transforms of

type

F (s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
f(1− e−t) dt

with f(z) =
∑∞

n=1 ωn
zn

nk
for suitable sequences (ωn)n≥1 of rational numbers. The sim-

plest interesting case ωn = 1 corresponds to the Arakawa-Kaneko zeta function and has

been studied in [7]. In this article, we investigate the case ωn =
λn

n!
i.e. we study the

function

Fk(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
fk(1− e−t) dt with fk(z) =

∞∑
n=1

λn

n!
zn

nk
(k = 0, 1, 2, . . . ) ,

which is a priori defined in the half-plane <(s) ≥ 1 but analytically continues in the
whole complex s-plane (Theorem 7). We call this function Fk the modified zeta function

of order k. For k = 0, one must keep in mind that F0(s) is nothing else than ζ(s)− 1
s− 1

.

An evaluation by two different ways of the values Fk(q) at positive integers q leads
to a new class of identities linking Cauchy numbers, harmonic numbers and zeta values
which naturally extends Hermite’s formula for ζ (cf. [6]) i.e.

F0(q) =
∞∑

n=1

λn

n!n
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) = ζ(q)− 1
q − 1

,

where the polynomials Pm are the modified Bell polynomials defined by the generating
function

exp(
∞∑

k=1

xk
zk

k
) =

∞∑
m=0

Pm(x1, · · · , xm) zm ,

and H
(m)
n are the harmonic numbers. In the simplest case k = 1, this extension of

Hermite’s formula translates into the following relation (Theorem 10) :

F1(q) =
∞∑

n=1

λn

n!n2
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) =

∞∑
n=1

log(n+ 1)
nq

+ γζ(q) + ζ(q + 1)−
∞∑

n=1

Hn

nq
−

q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k

.

1These numbers have been introduced for the first time in 1670 by James Gregory in a letter to John
Collins.
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For example, for q = 2, since P1(Hn) = Hn and
∞∑

n=1

Hn

n2
= 2ζ(3), then the previous

relation may be written

F1(2) =
∞∑

n=1

λnHn

n!n2
=

∞∑
n=1

log (n+ 1)
n2

+ γζ(2)− ζ(3)− 1 ,

and this generalizes

F0(2) =
∞∑

n=1

λnHn

n!n
= ζ(2)− 1 .

The function Fk has also an interesting interpretation in terms of Ramanujan sum-
mation (cf. [3]) as underscored by Theorem 11. In particular, one shows the identity

Fk(1) =
∞∑

n=1

λn

n!
1

nk+1
=

R∑
n≥1

Pk(Hn,H
(2)
n , . . . ,H

(k)
n )

n

where, in the right member,
∑R

n≥1 denotes the sum (in the sense of Ramanujan) of the
divergent series. This raises a kind of “duality” between Fk(1) and F0(k + 1).

2 Preliminaries

2.1 The non-alternating Cauchy numbers

Definition 1. The Cauchy numbers (cf. [11]) are the rational numbers Cm defined for
all natural numbers m by the exponential generating function :∑

m≥0

Cm
zm

m!
=

z

log(1 + z)
.

Let λn+1 := (−1)nCn+1, then λn+1 > 0, and changing z in −z, we get the following
relation

1
log(1− z)

+
1
z

=
∑
n≥0

λn+1

(n+ 1)!
zn . (1)

For z = 1− e−t and t > 0, this relation may be rewritten

1
1− e−t

− 1
t

=
∞∑

n=1

λn

n!
(1− e−t)n−1 . (2)

For each integer n ≥ 1, we will call λn the nth non-alternating Cauchy number.

Example 1. The first non-alternating Cauchy numbers are

λ1 =
1
2
, λ2 =

1
6
, λ3 =

1
4
, λ4 =

19
30

, λ5 =
9
4
.
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2.2 The modified Bell polynomials and the harmonic numbers

Definition 2. The modified Bell polynomials (cf. [9]) are the polynomials Pm defined
for all natural numbers m by P0 = 1 and the generating function

exp

∑
k≥1

xk
zk

k

 = 1 +
∑
m≥1

Pm(x1, ..., xm) zm . (3)

Proposition 1. For all natural numbers m, and each integer n ≥ 1,∫ +∞

0
e−t(1− e−t)n−1 t

m

m!
dt =

Pm(Hn, . . . ,H
(m)
n )

n
(4)

with

H(m)
n :=

n∑
j=1

1
jm

and Hn := H(1)
n .

Proof. One starts from the classical Euler’s relation :

B(a, b) =
∫ 1

0
ua−1(1− u)b−1 du =

Γ(a)Γ(b)
Γ(a+ b)

and substitute u = e−t, a = 1− z and b = n+ 1, then one obtains∫ +∞

0
e−t(1− e−t)netzdt =

n!
(1− z)(2− z) . . . (n+ 1− z)

.

Moreover, one has

n!
(1− z)(2− z) . . . (n+ 1− z)

=
n!

(n+ 1)!
×

n∏
j=0

(1− z

j + 1
)−1

=
1

(n+ 1)
× exp(−

n∑
j=0

log(1− z

j + 1
))

=
1

(n+ 1)
× exp(

n∑
j=0

∞∑
k=1

zk

k(j + 1)k
)

=
1

(n+ 1)
exp(

∞∑
k=1

H
(k)
n+1

zk

k
)

=
∞∑

m=0

Pm(H(1)
n+1, . . . ,H

(m)
n+1)

n+ 1
zm (by (3)).

Thus (4) results by identification of the term in zm.
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Example 2. For small values of m, one has

P1(Hn) = Hn ; P2(Hn,H
(2)
n ) =

(Hn)2

2
+
H

(2)
n

2
;

P3(Hn,H
(2)
n ,H(3)

n ) =
(Hn)3

6
+
HnH

(2)
n

2
+
H

(3)
n

3
.

2.3 The Laplace-Borel transformation

We consider the vector space E of complex-valued functions f ∈ C1(]0,+∞[) such that

for all ε > 0, there exists Cε > 0 such that |f(t)| ≤ Cεe
εt for all t ∈ ]0,+∞[ .

In particular, a function f ∈ E satisfies the two following properties :

a) for all x with <(x) > 0, t 7→ e−xtf(t) is integrable on ]0,+∞[ ,

b) for all β with 0 < β < 1, t 7→ |f(t)| 1
tβ

is integrable on ]0, 1[ .

We recall now some basic properties (cf. [12]) of the Laplace transformation in this
frame which is appropriate for our purpose.

Definition 3. Let f be a function in E. The Laplace transform L(f) of f is defined by

L(f)(x) =
∫ +∞

0
e−xtf(t) dt for <(x) > 0 .

Proposition 2 (cf. [12]). Let E := L(E) be the image of E under L. If a is a function
in E , then

a) a is an analytic function of x in the half-plane <(x) > 0.

b) a(x)→ 0 when <(x)→ +∞.

c) L : E → E is an isomorphism.

Definition 4. Let a ∈ E . The Borel transform of a is the unique function â ∈ E such
that a = L(â). One has the two reciprocal formulas

â(t) =
1

2iπ

∫ c+i∞

c−i∞
ezta(z) dz for all c > 0 and t > 0 ,

and

a(x) =
∫ +∞

0
e−xtâ(t)dt for <(x) > 0 .

Definition 5. Let f and g be two functions in E. The convolution product f ∗ g of f
and g is the function defined for all t > 0 by

(f ∗ g)(t) =
∫ t

0
f(u)g(t− u) du .
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Proposition 3 (cf. [12]). If f ∈ E and g ∈ E, then f ∗ g ∈ E and

L(f ∗ g) = L(f)L(g) . (5)

Hence, if a ∈ E and b ∈ E then ab ∈ E since ab = L(â ∗ b̂).

Theorem 1. Let a be a function in E. Then the series∑
n≥1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1â(t)dt

converges and
∞∑

n=1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1â(t)dt =

∫ +∞

0
(

1
1− e−t

− 1
t
)e−tâ(t)dt . (6)

Proof. By (2)∫ +∞

0
(

1
1− e−t

− 1
t
)e−tâ(t)dt =

∫ +∞

0

∞∑
n=1

λn

n!
(1− e−t)n−1e−tâ(t) dt .

In the right member, the order of
∫ +∞
0 and

∑∞
n=1 may be interchanged since∫ +∞

0

∞∑
n=1

∣∣∣∣λn

n!
(1− e−t)n−1e−tâ(t)

∣∣∣∣ dt =
∫ +∞

0

∞∑
n=1

λn

n!
(1− e−t)n−1e−t |â(t)| dt

=
∫ +∞

0
(

1
1− e−t

− 1
t
)e−t |â(t)| dt

and the convergence of this last integral follows from the assumption that a ∈ E .

Example 3. Let a(x) =
1
xs

with <(s) ≥ 1. Then a ∈ E and â(t) =
ts−1

Γ(s)
. Hence

∞∑
n=1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1 t

s−1

Γ(s)
dt =

1
Γ(s)

∫ +∞

0
e−t(

1
1− e−t

− 1
t
)ts−1dt

=

γ if s = 1

ζ(s)− 1
s− 1

if s 6= 1

where γ refers to the Euler constant. In particular, since∫ +∞

0
e−t(1− e−t)n−1dt =

1
n

for each integer n ≥ 1 ,

then

γ =
∞∑

n=1

λn

n!
1
n
.
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3 The operator D

Proposition 4. If a ∈ E , then the integral∫ +∞

0
e−t(1− e−t)x−1â(t)dt

converges for all x with <(x) > 0.

Proof. If a ∈ E and <(x) > 0, we may write for t ∈ ]0,+∞[,∣∣e−t(1− e−t)x−1â(t)
∣∣ ≤ e−te(1−<(x))(− log(1−e−t)) |â(t)| .

The convergence when t→ +∞ results from the inequality

e−te(1−<(x))(− log(1−e−t)) |â(t)| ≤ e−t

1− e−t
|â(t)| ≤ 2e−t |â(t)| .

The convergence when t→ 0 results from the inequality

e(1−<(x))(− log(1−e−t)) ≤

{
1 si <(x) ≥ 1

1
(1−e−t)(1−<(x)) si 0 < <(x) < 1

since the function t 7→ e−t |â(t)| 1
(1−e−t)β is integrable at 0 for 0 < β < 1 by definition of

E.

Definition 6. Let a be a function in E . We call D(a) the function defined for all x with
<(x) > 0 by

D(a)(x) =
∫ +∞

0
e−t(1− e−t)x−1â(t)dt . (7)

Remark 1. a) By Theorem 1, the series
∑
n≥1

λn

n!
D(a)(n) converges and its sum is given

by formula (6).

b) The values of D(a) at positive integers may be computed directly without the recourse
to â. The development of (1− e−t)n by the binomial theorem gives

D(a)(n+ 1) =
n∑

k=0

(−1)k

(
n

k

)
a(k + 1) for all integer n ≥ 0. (8)

Definition 7. We call Λ the C1-diffeomorphism of R+ defined by Λ(u) := − log(1−e−u).
In particular, it is important to note that Λ is involutive :

Λ−1 = Λ .
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Theorem 2. Let a be a function in E. Then the function D(a) ∈ E and, moreover,
verifies the relation

D̂(a) = â(Λ) (9)

where â(Λ) denotes â ◦ Λ.

Proof. The change of variables t = Λ(u) in (7) gives

D(a)(x) =
∫ +∞

0
e−xuâ(Λ(u)) du for <(x) > 0.

Thus, D(a) = L(â(Λ)). It remains to prove that D(a) ∈ E . One has only to check that
the function â(Λ) is in E. This function being in C1(]0,+∞[), it suffices to show that for
all ε > 0, the function u 7→ e−εu |â(− log(1− e−u))| is bounded on ]0,+∞[. This results
from the existence of Cε > 0 such that∣∣â(− log(1− e−u))

∣∣ ≤ Cε(1− e−u)ε for all u ∈ ]0,+∞[ .

Example 4. Let a(x) =
1
xs

with <(s) ≥ 1. Then â(t) =
ts−1

Γ(s)
. Thus, by (9),

D(
1
xs

) = L
(

Λs−1

Γ(s)

)
, (10)

and if s = m+ 1 whith m a natural number and n ≥ 1, then by (4),

D(
1

xm+1
)(n) =

Pm(Hn, . . . ,H
(m)
n )

n
. (11)

Remark 2. Theorem 2 may be summarized in the following diagram

E D−−−−→ EyL−1

xL
E

Λ?

−−−−→ E

where Λ?(â) := â(Λ). The algebraic properties of D are sum up in the following theorem.

Theorem 3. The operator D is an automorphism of E which verifies D = D−1 and lets

the function x 7→ 1
x

invariant.

Proof. We can write D = LΛ?L−1 and Λ? is an automorphism of E which verifies
Λ? = (Λ?)−1 since Λ = Λ−1. Furthermore

D(
1
x

) = L(1) =
1
x
.
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4 The harmonic product

Our aim is to define the harmonic product of two functions a and b in E as being the
unique function f of E such that

D(a) (x).D(b) (x) = D(f) (x) .

Thus, we have to establish that such a function exists and is unique. In order to do this,
we introduce first a Λ-convolution product of two functions in E.

4.1 The Λ-convolution product

Proposition 5. If a and b are in E , then â(Λ) ∗ b̂(Λ) ∈ E.

Proof. From the definition of the convolution product, one may write(
â(Λ) ∗ (̂b(Λ)

)
(t) =

∫ t

0
â(Λ(u))̂b(Λ(t− u))du .

Now, for all ε > 0, there exists Cε > 0 and Dε > 0 such that∣∣â(− log(1− e−u))
∣∣ ≤ Cε(1− e−u)ε and∣∣∣̂b(− log(1− e−(t−u)))
∣∣∣ ≤ Dε(1− e−(t−u))ε for all u ∈ ]0,+∞[ .

It follows that ∣∣∣(â(Λ) ∗ b̂(Λ))(t)
∣∣∣ ≤ CεDε

∫ t

0
(1− e−u)ε(1− e−(t−u))εdu .

One has also∫ t

0
(1− e−u)ε(1− e−(t−u))εdu =

(
1− e−t

)1+2ε
∫ 1

0
uε (1− u)ε 1

(1− (1− e−t)u)ε+1
du

≤
(
1− e−t

)1+2ε
∫ 1

0

1
(1− (1− e−t)u)ε+1

du ≤
(
1− e−t

)1+2ε etε − 1
(1− e−t)ε

≤
(
1− e−t

)2ε etε − 1
ε

≤ etε

ε
.

Hence,
∣∣∣(â(Λ) ∗ b̂(Λ))(t)

∣∣∣ ≤ CεDε
etε

ε , which proves that this function belongs to E as
required.

Definition 8. Let a and b two functions in E . The Λ-convolution product â~ b̂ of â and
b̂ is defined by

â~ b̂ = Λ?(Λ?(â) ∗ Λ?(̂b))

(or equivalently since Λ? = (Λ?)−1)

(â~ b̂)(Λ) = â(Λ) ∗ b̂(Λ) .

Remark 3. The Λ-convolution product inherits of the algebraic properties of the ordi-
nary convolution product i.e. bilinearity, commutativity and associativity.
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4.2 The harmonic product

Definition 9. Let a and b two functions in E . The harmonic product a on b of a and b
is defined by

a on b = L(â~ b̂) ∈ E .

This construction may be summarized in the following diagram

(a, b) −−−−→ (â, b̂) −−−−→ (â(Λ), b̂(Λ))y y y
a on b ←−−−− â~ b̂ ←−−−− â(Λ) ∗ b̂(Λ)

Remark 4. The harmonic product inherits of the properties of the Λ-convolution prod-
uct : it is bilinear, commutative and associative.

Theorem 4. Let a and b in E. Then,

D(a on b) = D(a)D(b) (12)

and
D(ab) = D(a) on D(b) . (13)

Proof. One knows from Theorem 2 that

D = LΛ?L−1 .

Hence
D(a on b) = LΛ?L−1(a on b) = LΛ?(â~ b̂) = L(Λ?(â) ∗ Λ?(̂b))

and it follows from (5) and (9) that

L(Λ?(â) ∗ Λ?(̂b)) = L(Λ?(â))L(Λ?(̂b)) = D(a)D(b)

which proves (12). Moreover, (12) enables to write

D(D(a) on D(b)) = D2(a)D2(b) = ab (since D = D−1),

and so
D(a b) = D2(D(a) on D(b)) = D(a) on D(b)

which proves (13).

Remark 5. The values of (a on b)(n) may be computed without the recourse to â and
b̂. By elementary transformations, it can be shown that

(a on b)(n+ 1) =
∫ +∞

0

∫ +∞

0
(e−t−s)(e−t + e−s − e−te−s)nâ(t)̂b(s)dtds .

10



Hence, if the numbers Ck,l
n are defined by

(X + Y −XY )n =
∑

0≤k≤n
0≤l≤n

Ck,l
n XkY l ,

then, one has the following explicit formula

(a on b)(n+ 1) =
∑

0≤k≤n
0≤l≤n

Ck,l
n a(k + 1)b(l + 1) .

For small values of n, this enables to compute

(a on b)(1) = a(1)b(1) ,
(a on b)(2) = a(2)b(1) + a(1)b(2)− a(2)b(2) ,
(a on b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2)− 2a(3)b(2)− 2a(2)b(3) + a(3)b(3) .

Theorem 5. Let (
1
x

)onk

:=
1
x

on
1
x

on · · · on 1
x︸ ︷︷ ︸

k

(k = 1, 2, 3, · · · )

where
1
x

denotes (improperly) the function x 7→ 1
x

. Then, for all natural numbers m ≥ 0,

(
1
x

)on(m+1)

= D(
1

xm+1
) .

In particular, for all integers n ≥ 1,(
1
x

)on(m+1)

(n) =
Pm(Hn, . . . ,H

(m)
n )

n
. (14)

Proof. By (13) we have

D(
1

xm+1
) = D(

1
x
. . .

1
x︸ ︷︷ ︸

m+1

) =
(
D(

1
x

)
)on(m+1)

=
(

1
x

)on(m+1)

since D(
1
x

) =
1
x
.

Thus, (14) results from (11).
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4.3 The harmonic property

The following theorem explains the reason why the harmonic product is called “har-
monic”.

Theorem 6. Let a ∈ E. Then
1
x

on a =
A(x)
x

where A denotes the function defined for <(x) > 0 by

A(x) =
∫ +∞

0

e−xt − 1
e−t − 1

e−tâ(t)dt .

In particular, for each integer n ≥ 1(
1
x

on a

)
(n) =

A(n)
n

=
1
n

(
n∑

k=1

a(k)

)
. (15)

Proof. By the definition of the harmonic product, one has

1
x

on a = L(1 ~ â) .

Now :

(1 ~ â)(Λ(u)) = (1 ∗ â(Λ))(u) =
∫ u

0
â(Λ(v))dv = −

∫ Λ(u)

+∞
â(t)

e−t

1− e−t
dt

(by the change of variables t = Λ(v)). Hence,

(1 ~ â)(u) =
∫ +∞

u
â(t)

e−t

1− e−t
dt

Thus, we have

1
x

on a =
∫ +∞

0
e−xu

(∫ +∞

u
â(t)

e−t

1− e−t
dt

)
du

=
∫ +∞

0

(∫ t

0
e−xudu

)
â(t)

e−t

1− e−t
dt

=
1
x

∫ +∞

0
(1− e−xt)â(t)

e−t

1− e−t
dt

=
A(x)
x

.

Furthermore, for each integer n ≥ 1, we have

A(n) =
∫ +∞

0

e−nt − 1
e−t − 1

e−tâ(t)dt =
n∑

k=1

a(k) .

12



Remark 6. The harmonic property (15) admits the following generalization(
1

x(x+ 1) . . . (x+ q)
on a

)
(n) =

1
n(n+ 1) . . . (n+ q)

n∑
k=1

k(k + 1) . . . (k + q − 1)
q!

a(k) .

For example, for q = 1 we get(
1

x(x+ 1)
on a

)
(n) =

1
n(n+ 1)

n∑
k=1

ka(k).

Example 5.

1
x

on
1
x

= D(
1
x2

) = L(Λ) =
H(x)
x

with H(x) := ψ(x+ 1) + γ,

ψ denoting the logarithmic derivative of Γ. In particular, for each integer n ≥ 1(
1
x

on
1
x

)
(n) =

H(n)
n

=
Hn

n
.

Example 6. For <(s) ≥ 1,
1
x

on
1
xs

=
H(s)(x)

x
with

H(s)(x) :=
1

Γ(s)

∫ +∞

0

1− e−xt

1− e−t
e−t ts−1 dt .

For each integer n ≥ 1,(
1
x

on
1
xs

)
(n) =

H(s)(n)
n

=
H

(s)
n

n
=

1
n

(
n∑

m=1

1
ms

)
.

From (15), by induction on k, we deduce the following important corollary

Corollary 1. For each integer k ≥ 2,((
1
x

)onk

on a

)
(n) =

1
n

 ∑
n≥n1≥···≥nk≥1

a(nk)
n1 . . . nk−1

 (16)

Example 7. Applying (16) with a(x) = 1
x (and k = m), we get(

1
x

)on(m+1)

(n) =
1
n

 ∑
n≥n1≥···≥nm≥1

1
n1 . . . nm

 (17)

Hence, it follows from (14) and (17) that

Pm(Hn,H
(2)
n , . . . ,H(m)

n ) =
∑

n≥n1≥···≥nm≥1

1
n1 . . . nm

, (18)

which is a nice reformulation of Dilcher’s formula (cf. [2], [8]).
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5 The modified zeta function Fk

5.1 Integral representation

Definition 10. For all s ∈ C with <(s) ≥ 1 and each natural number k,

Fk(s) :=
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
fk(1− e−t) dt with fk(z) :=

∞∑
n=1

λn

n!
zn

nk
. (19)

Remark 7. By (2), one has F0(s) = ζ(s)− 1
s− 1

(cf. Example 3).

The fact that Fk may be represented by a Mellin transform enables to analytically
continue this function outside its half-plane of definition by a standard analytic method
(cf. [13] section 6.7).

Theorem 7. The function Fk analytically continues in the whole complex plane as an
entire function.

Proof. The function z 7→ 1
log(1− z)

+
1
z

being analytic in the disc D(0, 1) with a singu-

larity at 1, we deduce from (1) that the radius of convergence of the series
∑∞

n=1

λnz
n

n!
is equal to 1. Thus 1 is also the radius of convergence of the serie

∑∞
n=1

λnz
n

n!nk
which

defines an analytic function fk in the disc D(0, 1). Hence, the function

gk : t 7→ fk(1− e−t)

is analytic for all t ∈ C such that 1− e−t ∈ D(0, 1). Since 1− e0 = 0, it follows that gk

is analytic in a neighbourhood of 0. Since gk(0) = 0, the function t 7→ gk(t)
e−t

1− e−t
is

itself analytic in a neighbourhood of 0. It follows that its Mellin transform analytically
continues in the complex plane with simple poles at negative integers which are all
cancelled by the poles of Γ.

Theorem 8. For all s with <(s) > 1 and each integer k ≥ 1,

Fk(s) = ϑ(k)ζ(s)+
k∑

j=1

(−1)jϑ(k−j)Zj(s)+(−1)k 1
Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
T k

(
e−t − 1

t

)
dt

(20)
with

ϑ(k) :=
∞∑

n=1

λn

n!
1
nk

, (21)

Zj(s) :=
∑

n>n1>n2>···>nj>0

1
nsn1n2 . . . nj

, (22)

Tf (t) :=
∫ +∞

t

e−u

1− e−u
f(u)du . (23)

14



Proof. Formula (20) results from the integral representation (19) and the two following
lemmas.

Lemma 1. For all t > 0,

fk(1− e−t) =
k∑

j=0

(−1)jϑ(k − j)Λ
j (t)
j!

+ (−1)kT k(
e−t − 1

t
)

where ϑ is defined by (21) and T is the operator defined by (23).

Proof. Let gk(t) := fk(1− e−t). The function gk verifies the recursive relation

g′k(t) = e−tf ′k(1− e−t) =
e−t

1− e−t
fk−1(1− e−t) =

e−t

1− e−t
gk−1(t)

Thus

gk(t) =
∫ t

0

e−u

1− e−u
gk−1(u)du = gk(+∞)−

∫ +∞

t

e−u

1− e−u
gk−1(u)du

with
gk(+∞) = fk(1) = ϑ(k).

Thus, one has

gk(t) = ϑ(k)−
∫ +∞

t

e−u

1− e−u
gk−1(u)du = ϑ(k)− T (gk−1) .

A repeated iteration k times of this relation gives

gk(t) =
k−1∑
j=0

ϑ(k − j)(−1)jT j (1) + (−1)kT k(g0) .

Now, by (2),

g0(t) =
∞∑

n=1

λn(1− e−t)n

n!
=
e−t − 1

t
+ 1 ,

and thus

T k(g0) = T k(
e−t − 1

t
) + T k(1) .

Hence

gk(t) =
k−1∑
j=0

ϑ(k − j)(−1)jT j (1) + (−1)kT k(1) + (−1)kT k(
e−t − 1

t
) .

Since ϑ(0) =
∑∞

n=1

λn

n!
= 1 (by (1) and a tauberian theorem), one deduces that

gk(t) =
k∑

j=0

ϑ(k − j)(−1)jT j (1) + (−1)kT k(
e−t − 1

t
)

15



and, now, it remains to prove that

Λj (t)
j!

= T j(1)

which follows from the recursive relation

Λj (t)
j!

= −
∫ t

+∞

e−u

1− e−u

Λj−1 (u)
(j − 1)!

du = T

(
Λj−1

(j − 1)!

)
.

Lemma 2. Let Zj(s) defined by (22). Then, for all s ∈ C with <(s) > 1,

Zj(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t

Λj (t)
j!

dt .

Proof. From the recursive relation

∂
Λj (t)
j!

=
Λj−1 (t)
(j − 1)!

∂Λ(t) = − e−t

1− e−t

Λj−1 (t)
(j − 1)!

= −
∑
m>0

e−mt Λj−1 (t)
(j − 1)!

,

and Λ(t) =
∑
n>0

e−nt

n
, one may check by induction on j that

Λj (t)
j!

=
∑

n1>n2>...>nj>0

e−n1t

n1

1
n2
· · · 1

nj
.

Furthermore, one has

1
Γ(s)

∫ +∞

0
ts−1e−Nt e−t

1− e−t
dt =

∑
n>N

1
ns

(for <(s) > 1) .

Hence

1
Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t

Λj (t)
j!

dt =
∑

n>n1>n2>···>nj>0

1
ns

1
n1

1
n2
· · · 1

nj
= Zj(s) .
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5.2 Values of Fk at integers

Theorem 9. For all s in C with <(s) ≥ 1 and each natural number k, then

Fk(s) =
∞∑

n=1

λn

n!nk
D

(
1
xs

)
(n) . (24)

In particular, for all natural numbers m,

Fk(m+ 1) =
∞∑

n=1

λn

n!nk+1
Pm(Hn,H

(2)
n , . . . ,H(m)

n ) . (25)

Proof. The change of variables t = Λ(u) in (19) enables to write

Fk(s) =
1

Γ(s)

∫ +∞

0
fk(e−u)(Λ(u))s−1du .

Since D(
1
xs

) = L
(

Λs−1

Γ(s)

)
, we deduce (24) from this last expression of Fk(s). Moreover,

by (11), one has D(
1

xm+1
)(n) =

Pm(Hn, . . . ,H
(m)
n )

n
which proves (25).

Corollary 2. Let ϑ(s) be the Dirichlet series defined for <(s) > 0 by

ϑ(s) :=
∞∑

n=1

λn

n!
1
ns
.

Then for each natural number k,

ϑ(k + 1) = Fk(1) . (26)

Example 8.

F0(1) =
∞∑

n=1

λn

n!n
= γ = ϑ(1) ,

F0(2) =
∞∑

n=1

λnHn

n!n
= ζ(2)− 1 ,

F0(3) =
1
2

∞∑
n=1

λnH
2
n

n!n
+

1
2

∞∑
n=1

λnH
(2)
n

n!n
= ζ(3)− 1

2
,

F1(1) =
∞∑

n=1

λn

n!n2
= ϑ(2) ,

F1(2) =
∞∑

n=1

λnHn

n!n2
,

F1(3) =
1
2

∞∑
n=1

λnH
2
n

n!n2
+

1
2

∞∑
n=1

λnH
(2)
n

n!n2
.
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5.3 Identities linking Cauchy numbers, harmonic numbers and zeta
values

Theorem 10. For all integers q ≥ 2,

F1(q) =
∞∑

n=1

λn

n!n2
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) =

∞∑
n=1

log(n+ 1)
nq

+ γζ(q) + ζ(q + 1)−
∞∑

n=1

Hn

nq
−

q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k

. (27)

Proof. By (20) and (25), one may write

Fk(q) =
∞∑

n=1

λn

n!nk+1
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) =

ϑ(k)ζ(q) +
k∑

j=1

(−1)jϑ(k − j)Zj(q) + (−1)k 1
Γ(q)

∫ +∞

0
tq−1 e−t

1− e−t
T k

(
e−t − 1

t

)
dt .

(28)

We apply now (28) with k = 1. This gives

F1(q) = γζ(q)−
∑
n≥1

Hn−1

nq
+

1
Γ(q)

∫ +∞

0
tq−1 e−t

1− e−t
E1(t)dt

with E1(t) := −Ei(−t) =
∫ +∞

t

e−u

u
du. Thus,

F1(q) = γζ(q)−
∑
n≥1

Hn

nq
+ ζ(q + 1) + I(q)

where

I(q) =
1

Γ(q)

∫ +∞

0
tq−1 e−t

1− e−t
E1(t)dt =

1
Γ(q)

∞∑
n=1

∫ +∞

0
e−nttq−1E1(t)dt .

Since

E1(t) = −γ − log t+
∞∑

n=1

(−1)n−1

n

tn

n!
,

and −γ − log t = l̂og x
x (cf. [12]), then E1 = ̂log(x+1)

x . Thus∫ +∞

0
e−nttq−1E1(t)dt = (−1)q−1

(
log(x+ 1)

x

)(q−1)

(n) .

18



Hence, by a calculation of the (q − 1)th derivative, we get

I(q) =
(−1)q−1

(q − 1)!

∞∑
n=1

(
log(x+ 1)

x

)(q−1)

(n) =
∞∑

n=1

log(n+ 1)
nq

−
q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k

.

Remark 8. 1) We recall Euler’s formula (cf. [5])

∞∑
n=1

Hn

nq
=

{
1
2(q + 2)ζ(q + 1)− 1

2

∑q−2
k=1 ζ(k + 1)ζ(q − k) for q > 2

2ζ(3) for q = 2

2) From
∞∑

n=1

1
(n+ 1)n

= 1 and the decomposition

1
(n+ 1)knq−k

=
1

(n+ 1)k−1nq−k
− 1

(n+ 1)knq−k−1
(0 < k < q) ,

the sum of the series
∞∑

n=1

1
(n+ 1)knq−k

may be expressed as a linear combination of

zeta values and integers.

Example 9.

∞∑
n=1

log (n+ 1)
n2

+ γζ(2)− ζ(3)− 1 =
∞∑

n=1

λnHn

n!n2
,

∞∑
n=1

log (n+ 1)
n3

+ γζ(3)− 1
10
ζ(2)2 − 1

2
ζ(2) =

1
2

∞∑
n=1

λnH
2
n

n!n2
+

1
2

∞∑
n=1

λnH
(2)
n

n!n2
,

∞∑
n=1

log (n+ 1)
n4

+ γζ(4)− 2ζ(5) + ζ(2)ζ(3)− 2
3
ζ(3) +

1
3
ζ(2)− 1

2
=

1
6

∞∑
n=1

λnH
3
n

n!n2
+

1
2

∞∑
n=1

λnHnH
(2)
n

n!n2
+

1
3

∞∑
n=1

λnH
(3)
n

n!n2
.

5.4 Link with the Ramanujan summation

The function Fk has strong connections with Ramanujan summation (cf. [3], [4]).
If a ∈ E , then the series

∑
n≥1 a(n) may be written

∑
n≥1

a(n) =
∑
n≥1

∫ +∞

0
e−ntâ(t)dt
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and a formal permutation of
∑

n≥1 and
∫ +∞
0 would lead us to write

∑
n≥1

a(n) =
∫ +∞

0

1
1− e−t

e−tâ(t) dt.

However, this last integral may be divergent at 0. Nevertheless we can renormalize it
by removing the singularity at zero. This may be done merely by subtracting the polar
part 1

t of 1
1−e−t . From Theorem 1, we know that∫ +∞

0
(

1
1− e−t

− 1
t
)e−tâ(t)dt =

∞∑
n=1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1â(t)dt =

∞∑
n=1

λn

n!
D(a) (n) .

This justifies the following definition :

Definition 11. Let a be a function in E = L(E). The Ramanujan sum of the series∑
n≥1 a(n) is defined by

R∑
n≥1

a(n) :=
∫ +∞

0
(

1
1− e−t

− 1
t
)e−tâ(t)dt =

∞∑
n=1

λn

n!
D(a) (n) . (29)

Lemma 3. Let a and b in E . Then

R∑
n≥1

(a on b)(n) =
∞∑

n=1

λn

n!
D(a)(n)D(b)(n) . (30)

Proof. This results directly from (12) and (29).

Theorem 11. for all s ∈ C with <(s) ≥ 1, one has

F0(s) =
R∑

n≥1

1
ns

and Fk(s) =
R∑

n≥1

((
1
x

)onk

on
1
xs

)
(n) for k ≥ 1 . (31)

Proof. By (24) and (30), taking into account the invariance of
1
x

by D, one may write

R∑
n≥1

((
1
x

)onk

on
1
xs

)
(n) =

∞∑
n=1

λn

n!
D

((
1
x

)onk
)

(n)D
(

1
xs

)
(n)

=
∞∑

n=1

λn

n!

(
1
x

)k

(n)D
(

1
xs

)
(n)

=
∞∑

n=1

λn

n!nk
D

(
1
xs

)
(n) = Fk(s) .
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In particular, by (14), one deduces from (31) the following identity :

Corollary 3. For each natural number k,

Fk(1) = ϑ(k + 1) =
∞∑

n=1

λn

n!
1

nk+1
=

R∑
n≥1

Pk(Hn,H
(2)
n , . . . ,H

(k)
n )

n
. (32)

Example 10.

ϑ(1) =
∞∑

n=1

λn

n!n
=

R∑
n≥1

1
n

= γ ,

ϑ(2) =
∞∑

n=1

λn

n!n2
=

R∑
n≥1

Hn

n
,

ϑ(3) =
∞∑

n=1

λn

n!n3
=

1
2

R∑
n≥1

H2
n

n
+

1
2

R∑
n≥1

H
(2)
n

n
.

Remark 9. Comparing (32) with

F0(k + 1) =
∞∑

n=1

λn

n!n
Pk(Hn,H

(2)
n , . . . ,H(k)

n ) ,

one may observe a kind of duality between Fk(1) and F0(k + 1). This results from the
fact that D = D−1.

Remark 10. In the case q = 1, (27) is meaningless since both the series
∑

n≥1

log(n+ 1)
n

and
∑

n≥1

Hn

n
diverge. However, since

log(x+ 1)− (ψ(x+ 1) + γ) =
∫ +∞

0
(e−xu − 1)(

1
1− e−u

− 1
u

)e−u du ,

it follows that(
̂log(x+ 1)
x

−
̂ψ(x+ 1) + γ

x

)
(t) =

∫ +∞

t

(
1

1− e−u
− 1
u

)
e−u du ,

one may easily deduce from (29) the relation

R∑
n≥1

log(n+ 1)
n

=
R∑

n≥1

Hn

n
− γ2

2

which may be rewritten under the following form

R∑
n≥1

log(n+ 1)
n

= ϑ(2)− 1
2
ϑ(1)2 .
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5.5 Link with the Arakawa-Kaneko zeta function

For <(s) ≥ 1 and k ≥ 1, one can define in an algebraic fashion a function ξk by

ξk(s) :=
∞∑

n=1

D

((
1
x

)onk

on
1
xs

)
(n) =

∞∑
n=1

1
nk
D

(
1
xs

)
(n). (33)

In particular, one has for positive integers m

ξk(m+ 1) =
∞∑

n=1

1
nk
D

(
1

xm+1

)
(n) =

∞∑
n=1

Pm(Hn,H
(2)
n , . . . ,H

(m)
n )

nk+1
.

Since D
(

1
xs

)
= L

(
Λs−1

Γ(s)

)
, one may also rewrite (33) as

ξk(s) =
1

Γ(s)

∫ +∞

0
Lik(e−u)(Λ(u))s−1du ,

and the change of variables t = Λ(u) leads to the integral representation

ξk(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
Lik(1− e−t) dt

which is the analogue of (19) (with Lik in place of fk) and also the original definition of
the Arakawa-Kaneko zeta function (cf. [1], [7]).

Thus, taking in account the facts that ξk(1) = ζ(k + 1) and Li1(1 − e−t) = t, and
following the same process as in the proof of Theorem 8, one obtains the following
analogue of (20) :

ξk+1(s) =
k−1∑
j=0

(−1)jζ(k + 1− j)Zj(s) + (−1)k 1
Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
T k(t)dt (34)

In particular, in the simplest case k = 1, since

T (t) =
∫ +∞

t

e−u

1− e−u
udu =

∑
m>0

∫ +∞

t
e−muudu =

∑
m>0

e−tm

m
t+

∑
m>0

e−tm

m2
,

(34) translates into the formula

ξ2(s) = ζ(2)ζ(s)− s
∑

n>m>0

1
ns+1

1
m
−

∑
n>m>0

1
ns

1
m2

already obtained by Arakawa and Kaneko (cf. [1] Theorem 6 (ii)).

22



References

[1] T. Arakawa, M. Kaneko, Multiple zeta values, Poly-Bernoulli numbers and related
zeta functions, Nagoya Math. J. 153 (1999), 189-209.

[2] K. Boyadzhiev, Harmonic number identities via Euler’s transform, Journal of Inte-
ger Sequences, 12 (2009), Article 09.6.1.

[3] B. Candelpergher, M.A. Coppo, and E. Delabaere, La sommation de Ramanujan,
L’Enseignement Mathématique 43 (1997), 93-132.

[4] B. Candelpergher, H. Gadiyar, and R. Padma, Ramanujan summation and the
exponential generating function

∑∞
k=0

zk

k! ζ
′(−k), The Ramanujan J. 21 (2010), 99-

122.

[5] J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, The
Ramanujan J. 10 (2005), 51-70.

[6] M-A. Coppo, Nouvelles expressions des formules de Hasse et de Hermite pour la
fonction zêta d’Hurwitz, Expositiones Math. 27 (2009), 79-86.

[7] M-A. Coppo and B. Candelpergher, The Arakawa-Kaneko Zeta function,The Ra-
manujan J. 22 (2010), 153-162.

[8] K. Dilcher, Some q-series identities related to divisors functions, Discrete Math. 145
(1995), 83-93.

[9] P. Flajolet and R. Sedgewick, Mellin Transforms and Asymptotics : Finite differ-
ences and Rice’s integrals, Theoretical Computer Science 144 (1995), 101-124.

[10] C. Hermite, Extrait de quelques lettres de M. Ch. Hermite à M. S. Pincherle, Annali
di Matematica Pura ed Applicata 5 (1901), 55-72.

[11] D. Merlini, R. Sprugnoli, and C. Verri, The Cauchy numbers, Discrete Math. 306
(2006), 1906-1920.

[12] J. Schiff, The Laplace transform : theory and applications, Springer, New-York,
1999.

[13] E. Zeidler, Quantum Field Theory I : Basics in Mathematics and Physics, Springer,
Berlin Heidelberg, 2006.

23


