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Abstract

Improving an old idea of Hermite, we associate to each natural number k£ a modified
zeta function of order k. The evaluation of the values of these functions Fj at
positive integers reveals a wide class of identities linking Cauchy numbers, harmonic
numbers and zeta values.
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1 Introduction

It is well known since the second-half of the 19th century that the Riemann zeta function
may be represented by the (normalized) Mellin transform

1 400 1 et
=— T ———dt A 1
=i | T R > 1,
and from late works of Hermite (cf. [10]) that one has also

[e.e]

1 1 [tee -t An —t\n
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1 1
where \; = B and \p,41 = / (1l —x)---(n — z)dzr are the (non-alternating) Cauchy
0

numbers!.
Improving Hermite’s idea, one may, more generally, consider Mellin transforms of
type
1 +00 1 eft .
F(s) = — T ——f(1—e ") dt
Ol B =T
Z'I’L
with f(z) = > 7, wp— for suitable sequences (Wn)n>1 of rational numbers. The sim-
n >

plest interesting case w, = 1 corresponds to the Arakawa-Kaneko zeta function and has

A
been studied in [7]. In this article, we investigate the case w, = —7: i.e. we study the
n!
function
1 +o0 s—1 e_t —t . > >\TL Zn

n=1

which is a priori defined in the half-plane R(s) > 1 but analytically continues in the
whole complex s-plane (Theorem 7). We call this function Fj, the modified zeta function

1

of order k. For k = 0, one must keep in mind that Fy(s) is nothing else than ((s)— PR
S —

An evaluation by two different ways of the values Fj(q) at positive integers ¢ leads

to a new class of identities linking Cauchy numbers, harmonic numbers and zeta values

which naturally extends Hermite’s formula for ¢ (cf. [6]) i.e.

1

An B
Fo(@) = > pPaea (Hoy B2 HEY) = (@) = =

nln
n=1

where the polynomials P, are the modified Bell polynomials defined by the generating
function

and HT(Lm) are the harmonic numbers. In the simplest case k = 1, this extension of
Hermite’s formula translates into the following relation (Theorem 10) :

o0

An _
Fi(g) =) 5Py (Hn, HYY, o HTY) =
n=1"""
2. log(n + 1) > iy
Z nd +7C()+CQ+1 Zn:; %Z n_|_1knqk
n=1 n=1 k=1 n:l

!These numbers have been introduced for the first time in 1670 by James Gregory in a letter to John
Collins.



For example, for ¢ = 2, since P;(H,) = H, and Z — = , then the previous
n

n=1
relation may be written

i)=Y s el o) - -1,

nln?2
n=1 n=1

and this generalizes

=\ H,
Fo(2):Z ol =((2) - 1.
n=1 :

The function Fj has also an interesting interpretation in terms of Ramanujan sum-
mation (cf. [3]) as underscored by Theorem 11. In particular, one shows the identity

k+1 g
n n
n=1 n>1

. R Pu(H, HY,... 1)
Z* >

where, in the right member, 2521 denotes the sum (in the sense of Ramanujan) of the
divergent series. This raises a kind of “duality” between F(1) and Fy(k + 1).

2 Preliminaries

2.1 The non-alternating Cauchy numbers

Definition 1. The Cauchy numbers (cf. [11]) are the rational numbers %, defined for
all natural numbers m by the exponential generating function :

z z
Z Cgmﬁ - log(1+z)

m>0

Let A\p+1 := (—=1)"%n+1, then \,41 > 0, and changing z in —z, we get the following

relation 1
_— = . 1
log(1 — z) Z (n+1)! (1)

For z=1—e~t and t > 0, this relation may be rewritten

o0
_ n . n—
—— “—Z# e @
n=1

For each integer n > 1, we will call A, the nth non-alternating Cauchy number.

Example 1. The first non-alternating Cauchy numbers are

1 1 1 19 9
Al_i7>\2_67)‘3_ZaA4_%a)\5_1~



2.2 The modified Bell polynomials and the harmonic numbers

Definition 2. The modified Bell polynomials (cf. [9]) are the polynomials P, defined
for all natural numbers m by Py = 1 and the generating function

k
exp Z:z:k% =1+ Z Pp(z1,...;xm) 2™ (3)

k>1 m>1

Proposition 1. For all natural numbers m, and each integer n > 1,

" emt(1 = ety gy = Pl H) (@
0 m! n

with

|
H™ =" — and H,:=HY.

Proof. One starts from the classical Euler’s relation :

' a

and substitute v = e™*, a =1 — z and b = n + 1, then one obtains

oo —t —t\n tz n!
/0 =)t = T e T i)

Moreover, one has

n! n! - z
— o
1-2)2-2)...(n+1—-2) (n+1)! o Jj+1
1 - z
D) exp( JZ:% og(l = =—7))
= X exp ,
(n+1) (Fogk(j—i-l)k)
1 > (k) 2"
= exp(}  Hyir 7o)
(n+1) — k
< Pu(HY,, . HT)
=y Ao T e by (3))
m=0
Thus (4) results by identification of the term in 2. O



Example 2. For small values of m, one has

(Hn)2 H7(12) '
2 2

Pl(Hn) = H,; PQ(Hn7H7s2)) =

P3(H,,, H® H®)) = +

2.3 The Laplace-Borel transformation

We consider the vector space E of complex-valued functions f € C1(]0, 4+o0[) such that
for all € > 0, there exists C. > 0 such that |f(t)| < C.e® for all ¢ € ]0, +o00] .

In particular, a function f € E satisfies the two following properties :

a) for all z with R(z) > 0, t — e %! f(¢) is integrable on ]0, +ool,

b) for all B with 0 < 3 < 1, t+ |f(t)| ;5 1s integrable on |0, 1[.

We recall now some basic properties (cf. [12]) of the Laplace transformation in this
frame which is appropriate for our purpose.

Definition 3. Let f be a function in E. The Laplace transform L(f) of f is defined by

L(f) (@) = /0 eyt for R(x) > 0
Proposition 2 (cf. [12]). Let £ := L(F) be the image of F under L. If a is a function
in &, then
a) a is an analytic function of  in the half-plane (z) > 0.
b) a(z) — 0 when R(x) — +o0.
¢) L: F — £ is an isomorphism.

Definition 4. Let a € £. The Borel transform of a is the unique function @ € E such
that a = L£(@). One has the two reciprocal formulas

1 c+100
a(t) = / e*a(z)dz forallec>0andt >0,
C

297 —ioo
and

“+oo
a(xz) = /0 e~ "a(t)dt  for RN(x) >0

Definition 5. Let f and g be two functions in F. The convolution product f % g of f
and ¢ is the function defined for all t > 0 by

(f * 9)(t /f gt — u)d



Proposition 3 (cf. [12]). If f € EF and g € E, then fxg € E and

L(f *g) = L(f) £(g)-
Hence, if a € £ and b € £ then ab € £ since ab = E(’d*/b\).

Theorem 1. Let a be a function in £. Then the series

“+oo
va/ b1 — e ) la(t)dt

n>1

converges and

= An oo —t —t\n—1-~ e 1 1 —t~
Zm e (1—e " la(t)dt = i (= — e alt)t.
n=1

Proof. By (2)

oo 1 t Rl —1 t
7/\ dt “Yalt) dt.
/0 (g / Zn, etalt)

In the right member, the order of f0+oo and Y o2, may be interchanged since

[
0 n=1

Ay ety 'dt /“’in, "ot [a(t)] dt

- / (- —1>e-f|a<t>\dt
0

1—et ¢

and the convergence of this last integral follows from the assumption that a € £.

s—1
Example 3. Let a(z) = - with R(s) > 1. Then a € £ and @(t) = Ok Hence
s
Ay [T, 5! 1 [t 1 1
n —t(1 — —t\n—1 dt :/ —t - ts—ldt
;n!/o A=) G Tt ), ¢ G Y
¥ ifs=1
) ¢s) - —— ifs#£1

where « refers to the Euler constant. In particular, since
+o0 1
/ e (1 —e )" dt = = for each integer n > 1,
0 n

then

:\H

00
=y
_7’L

O]



3 The operator D

Proposition 4. If a € £, then the integral

+o0o
/ e t(1 — e YY" 1a(t)dt
0

converges for all = with R(x) > 0.

Proof. If a € £ and R(z) > 0, we may write for ¢ € 0, +o00],
‘e_t(l _ e—t)ac—la(t)‘ < e—te(l—éR(m))(—log(l—e*t)) ’a(t” )

The convergence when ¢t — 400 results from the inequality

e—t

1—et

R O] ()| < 2¢7 [a(t)] -

The convergence when t — 0 results from the inequality

1 si R(z) >

1
1 si0<R(z) <1

e(1-R(@))(—log(1—e~")) < {
(1) T—R@)

since the function t — e~ [a(t)| (1—elft)ﬁ is integrable at 0 for 0 < 8 < 1 by definition of
E. O

Definition 6. Let a be a function in £. We call D(a) the function defined for all  with
R(z) > 0 by

+oo
D(a)(z) = /O (1 — e Ta(t)dt . (7)

A
Remark 1. a) By Theorem 1, the series E —TD(a)(n) converges and its sum is given
n!
n>1
by formula (6).

b) The values of D(a) at positive integers may be computed directly without the recourse
to @. The development of (1 — e™)" by the binomial theorem gives

D(a)(n+1) = i(—l)k <Z>a(k: +1) for all integer n > 0. (8)
k=0

Definition 7. We call A the C'-diffeomorphism of R, defined by A(u) := —log(1—e™%).
In particular, it is important to note that A is involutive :

A=A,



Theorem 2. Let a be a function in E. Then the function D(a) € € and, moreover,
verifies the relation

D(a) = a(A) (9)

where a(A) denotes ao A.

Proof. The change of variables t = A(u) in (7) gives
+o0
D(a)(z) = / eTG(A(w)) du for R(z) > 0.
0

Thus, D(a) = L(a(A)). Tt remains to prove that D(a) € £. One has only to check that
the function @(A) is in E. This function being in C*(]0, +o0l), it suffices to show that for
all € > 0, the function u +— e~" |a(—log(1 — e™"))| is bounded on |0, +-o0o[. This results
from the existence of C; > 0 such that

[a(—log(1—e™))| < C(1— e ™) for all u € ]0,+o0] .
s—1

t
Example 4. Let a(z) = & with ®(s) > 1. Then a(t) = '(s)
s

whi-e(55).

and if s = m + 1 whith m a natural number and n > 1, then by (4),

. Thus, by (9),

1 P.(H,,... H™
D L,

Remark 2. Theorem 2 may be summarized in the following diagram

(11)

e 2. ¢

o

-2 . F
where A*(a) := a(A). The algebraic properties of D are sum up in the following theorem.
Theorem 3. The operator D is an automorphism of €& which verifies D = D™ and lets

the function x +— — invariant.
x

Proof. We can write D = LA*£~! and A* is an automorphism of E which verifies
A* = (A*)~! since A = A~!. Furthermore



4 The harmonic product

Our aim is to define the harmonic product of two functions a¢ and b in £ as being the
unique function f of £ such that

D(a) (x).D(b) (x) = D(f) (x).

Thus, we have to establish that such a function exists and is unique. In order to do this,
we introduce first a A-convolution product of two functions in FE.

4.1 The A-convolution product
Proposition 5. If a and b are in &, then a(A) * b(A) € E.

Proof. From the definition of the convolution product, one may write
(a(A) * (B(A)) (t) = /0 t A(AW)B(A(t — u))du.
Now, for all € > 0, there exists C. > 0 and D, > 0 such that
[a(—log(1 —e™))| < C-(1 —e*)® and
‘/b\(— log(1 — e_(t_“)))‘ < D.(1 — e Y for all u € )0, +o0| .
It follows that
G =B@] < p. [[(1- e - ey

One has also

t 1
1
1—e ™)1 —e t)egy = (1 — tH%/ (1 —w) d
/0( e ")y (l—e )du=(1—e"") 0“( u) (1—(1—e Hu)t! u
1 te
- 1 142 e —1
<(1— t1+2€/ du < (1 — et e -1
Q=) ) Ao e s (=) g
te te
<(1— *)256 lgi
€ €
Hence, |(a(A) *Z(A))(t)‘ < C’EDE%, which proves that this function belongs to E as
required. O

Definition 8. Let a and b two functions in £. The A-convolution product a®bof a and
b is defined by R R
a®b=A"(A*(a) « A*(b))
(or equivalently since A* = (A*)~1)

(@®b)(A) =a(A) *b(A) .
Remark 3. The A-convolution product inherits of the algebraic properties of the ordi-
nary convolution product ¢.e. bilinearity, commutativity and associativity.



4.2 The harmonic product

Definition 9. Let a and b two functions in £. The harmonic product a X b of a and b
is defined by

~

axb=La®b)eE.

This construction may be summarized in the following diagram

~

(a,b) —— (@,b) —— (@(A),b(A))
L
axb—— a®b «—— a(A)xb(A)

Remark 4. The harmonic product inherits of the properties of the A-convolution prod-
uct : it is bilinear, commutative and associative.

Theorem 4. Let a and b in £. Then,
D(a x b) = D(a) D(b) (12)

and
D(ab) = D(a) x D(b). (13)

Proof. One knows from Theorem 2 that
D=LA L.

Hence
D(a x b) = LA*L Ha w b) = LA* (@ ® b) = L(A*(@) = A*(b))

and it follows from (5) and (9) that
L(A*(@) * A* (b)) = £(A*(@)£(A*(B)) = D(a) D(b)
which proves (12). Moreover, (12) enables to write

D(D(a) x D(b)) = D?*(a) D*(b) = ab (since D = D™1),

and so
D(ab) = D*(D(a) x D(b)) = D(a) x D(b)

which proves (13). O

Remark 5. The values of (a x b)(n) may be computed without the recourse to a and
b. By elementary transformations, it can be shown that

“+oo “+oo R
(axb)(n+1)= /0 /0 (e (et + e % — e te™*)a(t)b(s)dtds .

10



Hence, if the numbers C’,]fjl are defined by

(X+Y-XY)" = > CcHxhyt,
0<k<n
0<1<n
then, one has the following explicit formula

(@axb)(n+1)= Y CHa(k+1)b(l+1).
0<k<n
0<i<n
For small values of n, this enables to compute

(axb)(l)=a
(@™ b)(2) =a(2)b(1) +a(1)b(2) — a(2)b(2)
(axb)(3)=ua

Theorem 5. Let

1 1
where — denotes (improperly) the function x — — . Then, for all natural numbers m > 0,
x T

1 X (m+1) 1
(3) =Pl

In particular, for all integers n > 1,

1) 0ty Po(Hy, ..., H™)
GINCE M) (14)
Proof. By (13) we have

1 1 1 1 X (m+1) 1 X(m+1) 1 1

D =D(—...—)={(D(—- = - i D(—)=—.

() = D1 = (D) (1) e ()=

——
m+1

Thus, (14) results from (11). O

11



4.3 The harmonic property

The following theorem explains the reason why the harmonic product is called “har-
monic”.
Theorem 6. Let a € £. Then
A(x)
x
where A denotes the function defined for R(z) > 0 by

A( )_/Jrooemt_l _tA(t)dt
r) = ; e—t—le a .

X a=

8|

In particular, for each integer n > 1

1 CAn) 1S
k=1

Proof. By the definition of the harmonic product, one has

1 ~

—Ma= L(1®a).
Now :

N N v A(u) N et
(1maAw) = 1) = [ ane)d =- [ aw S
0 +o00 -

(by the change of variables t = A(v)). Hence,

+o0 e—t

(1 ®a)(u) = / A1)yt

1 400 400 et
—Xa= / e </ a(t) tdt) du
x 0 ” 1—e"
+00 t et
= e "du | a(t) dt
fo ([

1 +o0o -t
- / (1 - e~ya(t)——dt
0

Thus, we have

x 1—et
A(z)

X

Furthermore, for each integer n > 1, we have

oo o—nt _ n
A(n) = /0 L etamydt =Y ak).

e t—1
k=1

12



Example 5.

= D(%) =L(A) = H:ix) with H(x) :=¢(z+ 1)+,

SR
SR

X

1) denoting the logarithmic derivative of I'. In particular, for each integer n > 1

(L) -t _t

X X n n

Example 6. For £(s) > 1,

1 1  HO(2)
— X 73 —
X X xr
with . .
1 *©1—-e?
HO(z) = —— —tys—l gy
(@) F(s)/o T—et©

For each integer n > 1,

1oAY o HOm) B 1 ({1
() =T DL (5o L),

m=1

From (15), by induction on k, we deduce the following important corollary

Corollary 1. For each integer k > 2,
1\ "k 1 a(ng)
— X == _ 16
() )=t 3 el o
n>ny>--2>ng>1

Example 7. Applying (16) with a(z) = 1 (and k = m), we get

—_

<i> M(m+1) (n) = ! Z 1nm (17)

ni...
n2ni>->nm>1

Hence, it follows from (14) and (17) that

Po(H,, H® ... HM™) = > #, (18)

n>ny > Sng>1 LM

which is a nice reformulation of Dilcher’s formula (cf. [2], [8]).

13



5 The modified zeta function £}

5.1 Integral representation

Definition 10. For all s € C with R(s) > 1 and each natural number &,
1 +OO s—1 eit —t . > )\TL zn
Fi(s) == F(s)/o P (et with fi(2) = d S (19)
1

S —

Remark 6. By (2), one has Fy(s) = ((s) —

1 (cf. Example 3).

The fact that Fj may be represented by a Mellin transform enables to analytically
continue this function outside its half-plane of definition by a standard analytic method
(cf. [13] section 6.7).

Theorem 7. The function Fy analytically continues in the whole complex plane as an
entire function.

1
log(1 — z)

larity at 1, we deduce from (1) that the radius of convergence of the series EOO_

1

+ — being analytic in the disc D(0,1) with a singu-
z

A 2™

Proof. The function z —

is equal to 1. Thus 1 is also the radius of convergence of the serie »_° , —— which

defines an analytic function fj in the disc D(0,1). Hence, the function

gr it fr(l—e™)
is analytic for all ¢+ € C such that 1 —e~* € D(0,1). Since 1 — € = 0, it follows that gy,
—t

is analytic in a neighbourhood of 0. Since g;(0) = 0, the function ¢ — g () ] ¢ — s
—e

itself analytic in a neighbourhood of 0. It follows that its Mellin transform analytically

continues in the complex plane with simple poles at negative integers which are all

cancelled by the poles of T. O

Theorem 8. For all s with R(s) > 1 and each integer k > 1,

+oo e—t e—t_

(20)
with
1
= — 21
o0 =3 (21)

ST PR o —— (22)

nsning ...n;
n>n1>n2>~~->nj>0 172 J

TF(t) = /t T (23)

1—e ¥

14



Proof. Formula (20) results from the integral representation (19) and the two following
lemmas.

Lemma 1. For all ¢ > 0,

A (t)

4!

e t—1
t

k
fil —e™) =Y (1) 0(k — j) + (=1)FT™(

J=0

where 9 is defined by (21) and 7' is the operator defined by (23).

)

Proof. Let gi(t) := fr(1 — e™t). The function gy, verifies the recursive relation

—t —t
/ R —ty_ € —ty_ €
Ghit) = e i =) = (=) = g ()
Thus
t e U —+o00 e~ U
a0 = [ T geadn = g0 - [ T g
0 —€ t 1—6
with

gi(+00) = fi(1) = I(k).
Thus, one has
e*’u/
1—e v

) =) - | e (wdu = 9(k) — T(g).

A repeated iteration k times of this relation gives

k—1
gr(t) = D0k — ) (=117 (1) + (=1)*T*(g0)
§=0
Now, by (2),
go(t) ZZAn(l — r_e t_l +1,
n=1 '
and thus -
TH(go) = TH( =) + TH()
Hence
k—1 o ot 1
ge(t) = 0k — §) (1T (1) + (=1)FT*(1) + (=1)T*( )
§=0

n=1

An
Since 9(0) = >_.>° i 1 (by (1) and a tauberian theorem), one deduces that

k —t
9u() = 301k = 1V (1) ¢ (TR

15



and, now, it remains to prove that

A (t)

Ao =T)

which follows from the recursive relation

A (1) :/t et A (u)du:T< A >

! o T—e® (1) G-

Lemma 2. Let Z;(s) defined by (22). Then, for all s € C with R(s)

1 oo s—1 eit Aj (t>
Zj(s):/o RS

Proof. From the recursive relation

N(t) AL et ATL(1) —
7! (j—1! 0 =1 (j— 1! ngo
et . . .
and A(t) = E ——, one may check by induction on j that
n>0

! ny n n;
J ni>ng>.>n;>0 1 2 J

A (t) Z et 1 1

Furthermore, one has

1/+oot$—1 —Ntidt— > 1 (for R(s) >
'(s) Jo © 1 et _n>N ne  VOTTHS

Hence

1 /+°° g1 €0 M) 3 i1t1
I'(s) Jo 1—e-t 4l N ns ny ng

n>n1>na>:>n; >0

16

> 1,

ML)

(G-

1).



5.2 Values of F at integers

Theorem 9. For all s in C with R(s) > 1 and each natural number k, then

— An 1
Fi(s) = Z D <x> (n). (24)
In particular, for all natural numbers m,
00 )\n .
Fi(m +1) :ZWPW(H’VZ’H7(LQ)7"'7H7(L ))- (25)
n=1
Proof. The change of variables ¢ = A(u) in (19) enables to write
0=t [ e (M)
Fi.(s :/ fe(e™™ w))* du.
L'(s) Jo
, 1 AsT . :
Since D(— ) =L ) ) we deduce (24) from this last expression of Fj(s). Moreover,
x 5
1 P(H,, ..., HS™)

by (11), one has D(——5)(n) = which proves (25). O
x

n
Corollary 2. Let ¥(s) be the Dirichlet series defined for R(s) > 0 by

o0

A 1
V(s) := ——.
(s) nzz:l n! ns
Then for each natural number k,
Ik+1)=Fr(1). (26)
Example 8.
A1) =3 =y = g0
— nln ’
> M\ Hp
F2) =30 S =6 -1,
1S NH2 13N HPY 1
F —— n - n n — -
0(3) 27; nln 2 &= nln (3) 2’
RO =3 )
— nln? ’
= \H,
R :Z nin? ’
n=1
1S NH2 13 N,HPY
Fi(3) == Loy .
1(3) 2; nln2 +2; nln?2

17



5.3 Identities linking Cauchy numbers, harmonic numbers and zeta
values

Theorem 10. For all integers q > 2,

o0

An _
Fi(g) =) 5Py (H, HYY, o HTY) =
n=1
00 0o -1 00
log(n + 1 n a1 1
Z(M)+VC(Q)+€(Q+1)—ZM— %ZW- (27)
n=1 n=1 k=1"" n=1

Proof. By (20) and (25), one may write

o

An _
Fk(q) :ZWPq_l(Hn7HT(L2)7"‘7HT(Lq 1)) =
n=1

‘ j - L[ e e’ -1
ﬂ(k)C(q)—i—jE::l(—l) ﬁ(k—J)Zj(Q)Jr(—l)kF(q)/o 7 —tTk< t )dt'

We apply now (28) with k£ = 1. This gives

Hn,1 1 +oo o1 e—t
Fi(q) =~C(q) — Z nd + Q) t ﬁEl (t)dt
n>1 4) Jo

—Uu

+oo o
with E1(¢) := —Ei(—t) = / ——du. Thus,
¢ u

Fi(g) =¢(q) — Z% +¢(g+1)+ I(q)

n>1
where
1 teo et R N
I(Q):F(q)/o 14 1—etE1(t>dt:F(q);/0 e "t B (t)dt .
Since o (_pyu-t g
El(t):—'y—logt—i-nz:; —,

—_

and —y —logt = 10% (cf. [12]), then Eq = w. Thus

/0+oo e My (t)dt = (—1)17! <log(az+1)) o -

X
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Hence, by a calculation of the (¢ — 1)th derivative, we get

log(z + 1) (a=1) log(n + 1) K e 1
o= Gl () 0= S S e

O]

Remark 7. 1) We recall Fuler’s formula (cf. [5])

i@ _ J3a+2)Ca+ 1) - I C(k+1)¢(g — k) for g > 2
nd 2¢(3) for g =2

n=1

o0
1
2) From Z m =1 and the decompOSitiOn

L = ! 1 (0<k<q)
(n+ Dkna=Fk — (n+ 1)k-Ina=k  (n 4 1)kpa—k-1 >

the sum of the series Z may be expressed as a linear combination of

(n+ 1)kna—Fk
zeta values and 1ntegers
Example 9.
o0 oo
log (n+1) AnHyp
Z:lng‘f‘”YC(z)—C(g)_ :z;n!nz’
n= n—=

> 1 1 1 1 1S AHE 1 N HPY
S B ) - @ - g2 = 5 >0 Mty Dy

— ns3 = nn? = 2 = nin? ’
Zlog (n+1) 2 1 1
;714 +9¢(4) = 2¢(5) + ¢(2)¢B) = 3¢B) + 3C2) - 5 =
AHLHE 1S A HY
Z n'n2 Z T 3 Z nln?

= n=1 n=1
5.4 Link with the Ramanujan summation
The function Fj has strong connections with Ramanujan summation (cf. [3], [4]).

Definition 11. Let a be a function in & = L(E). The Ramanujan sum of the series
> ps1 a(n) is defined by

> a(n) = —D(a) (n). (29)



Lemma 3. Let a and b in £. Then

R 00

An
Y (axb)(n)= - P(@)(n) D(b)(n). (30)
n>1 n=1
Proof. This results directly from (12) and (29). O

Theorem 11. for all s € C with R(s) > 1, one has

R R Xk
Fo(s) = Z% and Fy(s) =3 ((;) v xl) (n) fork>1.  (31)

n>1 n>1

1
Proof. By (24) and (30), taking into account the invariance of — by D, one may write
x

gjl ((i) “ X ;) (n) =§: A—?D <<i) Mk) (n)D <;> (n)

n=1
* A\, /1\* 1
35 (5) o () o
n=1
= 1
O
In particular, by (14), one deduces from (31) the following identity :
Corollary 3. For each natural number k,
) R (2) (k)
An 1 Py(H,, Hy”,...,Hy")
Fk(l):ﬁ(k—kl):zﬁnkﬂ => - . (32)

n=1 n>1

Example 10.

n=1 n>1
00 R
An H,
v(2) = Z nln? n’
n=1 n>1
o0 R R (2)
A 1= H? 1-H;
M=) s a2 i,
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Remark 8. Comparing (32) with
Fo(k+1) I Py(Hy, HP . HRY

one may observe a kind of duality between Fj(1) and Fy(k + 1). This results from the
fact that D = D1,

log(n + 1)

Remark 9. In the case ¢ = 1, (27) is meaningless since both the series ) -,
= n

H,
and ), -, — diverge. However, one may easily show the relation
n
R R
S _yhlogtntl) | o7
n n 2
n>1 n>1
which may be rewritten under the following form

R
Y ) Loy,

n
n>1

5.5 Link with the Arakawa-Kaneko zeta function

For (s) > 1 and k > 1, one can define in an algebraic fashion a function & by

) ::gjlz) (<i> " ;) () =3 =D <xl> (). (33)

In particular, one has for positive integers m

> P (Ho, HY, ..., HI™)
6+ 1) =3 o0 (i ) o) = 3 Pl B0,
n=1 n=1

1 Asfl
Since D [ — | = L [ =— ], one may also rewrite (33) as
xs I'(s)

+o0
)= [ e MA@,

and the change of variables ¢t = A(u) leads to the integral representation

En(s) = 1/+OO P a1 ety dt
A L'(s) Jo I—et *

which is the analogue of (19) (with Lix in place of f;) and also the original definition of
the Arakawa-Kaneko zeta function (cf. [1], [7]).
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Thus, taking in account the facts that &(1) = ((k + 1) and Li;(1 — e™?) = ¢, and
following the same process as in the proof of Theorem 8, one obtains the following
analogue of (20) :

e
—

— ) ) 1 oo ot
Genn(5) = (-0 1= DZ505) + ()i [ o7 ST a0
=0 (s) Jo —€
In particular, in the simplest case k = 1, since
too  o-u +o0 e~ tm e—tm
— — —mu —
T(t)/t 1_6_uudu2/t e udU—Z mt—i—ZW,
m>0 m>0 m>0

(34) translates into the formula

() =@ s Y i Y L

n>m>0 n>m>0

already obtained by Arakawa and Kaneko (cf. [1] Theorem 6 (ii)).
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