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1 Introduction

It is well known since the second-half of the 19th century that the Riemann zeta function
may be represented by the (normalized) Mellin transform

ζ(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
dt for <(s) > 1 ,

and from late works of Hermite (cf. [8]) that one has also

ζ(s)− 1
s− 1

=
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t

( ∞∑
n=1

λn

n!
(1− e−t)n

)
dt for <(s) ≥ 1 ,



where λ1 =
1
2

and λn+1 =
∫ 1

0
x(1 − x) · · · (n − x) dx are the (non-alternating) Cauchy

numbers.
Improving Hermite’s idea, one may, more generally, consider Mellin transforms of

type

F (s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
f(1− e−t) dt

with f(z) =
∑∞

n=1 ωn
zn

nk
for suitable sequences (ωn)n≥1 of rational numbers. The sim-

plest interesting case ωn = 1 corresponds to the Arakawa-Kaneko zeta function and has

been studied in [6]. In this article, we investigate the case ωn =
λn

n!
i.e. we study the

function

Fk(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
fk(1− e−t) dt with fk(z) =

∞∑
n=1

λn

n!
zn

nk
(k = 0, 1, 2, . . . ) ,

which is a priori defined in the half-plane <(s) ≥ 1 but analytically continues in the
whole complex s-plane (Theorem 6). For k = 0, one must keep in mind that F0(s) is

nothing else than ζ(s)− 1
s− 1

.

An evaluation by two different ways of the values Fk(q) at positive integers q leads
to a class of new identities linking Cauchy numbers, harmonic numbers and zeta values
(Theorem 8) which naturally extends Hermite’s formula for ζ (cf. [5]) i.e.

F0(q) =
∞∑

n=1

λn

n!n
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) = ζ(q)− 1
q − 1

,

where the polynomials Pm are the modified Bell polynomials defined by the generating
function

exp(
∞∑

k=1

xk
zk

k
) =

∞∑
m=0

Pm(x1, · · · , xm) zm ,

andH(m)
n are the harmonic numbers. In the simplest case k = 1, one obtains in particular

the following relation

F1(q) =
∞∑

n=1

λn

n!n2
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) =

∞∑
n=1

log(n+ 1)
nq

+ γζ(q) + ζ(q + 1)−
∞∑

n=1

Hn

nq
−

q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k

.

For example, for q = 2, since P1(Hn) = Hn and
∞∑

n=1

Hn

n2
= 2ζ(3), then the previous

relation may be written
∞∑

n=1

λnHn

n!n2
=

∞∑
n=1

log (n+ 1)
n2

+ γζ(2)− ζ(3)− 1 ,
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and generalizes
∞∑

n=1

λnHn

n!n
= ζ(2)− 1 .

The function Fk has also an interesting interpretation in terms of Ramanujan sum-
mation (cf. [2]) as underscored by Theorem 11. In particular, one shows the identity

Fk(1) =
∞∑

n=1

λn

n!
1

nk+1
=

R∑
n≥1

Pk(Hn,H
(2)
n , . . . ,H

(k)
n )

n

where, in the right member,
∑R

n≥1 denotes the sum (in the sense of Ramanujan) of the
divergent series. This raises a kind of “duality” between Fk(1) and F0(k + 1).

2 Preliminaries

2.1 The non-alternating Cauchy numbers

Definition 1. The Cauchy numbers (cf. [9]) are the rational numbers Cm defined for
all natural numbers m by the exponential generating function :∑

m≥0

Cm
zm

m!
=

z

log(1 + z)
.

Let λn+1 := (−1)nCn+1, then λn+1 > 0, and changing z in −z, we get the following
relation

1
log(1− z)

+
1
z

=
∑
n≥0

λn+1

(n+ 1)!
zn . (1)

For z = 1− e−t and t > 0, this relation may be rewritten

1
1− e−t

− 1
t

=
∞∑

n=1

λn

n!
(1− e−t)n−1 . (2)

For each integer n ≥ 1, we will call λn the nth non-alternating Cauchy number.

Example 1. The first non-alternating Cauchy numbers are

λ1 =
1
2
, λ2 =

1
6
, λ3 =

1
4
, λ4 =

19
30

, λ5 =
9
4
.

2.2 The modified Bell polynomials and the harmonic numbers

Definition 2. The modified Bell polynomials (cf. [7]) are the polynomials Pm defined
for all natural numbers m by P0 = 1 and the generating function

exp

∑
k≥1

xk
zk

k

 = 1 +
∑
m≥1

Pm(x1, ..., xm) zm . (3)
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Proposition 1. For all natural numbers m, and each integer n ≥ 1,∫ +∞

0
e−t(1− e−t)n−1 t

m

m!
dt =

Pm(Hn, . . . ,H
(m)
n )

n
(4)

with

H(m)
n :=

n∑
j=1

1
jm

and Hn := H(1)
n .

Proof. One starts from the classical Euler’s relation :

B(a, b) =
∫ 1

0
ua−1(1− u)b−1 du =

Γ(a)Γ(b)
Γ(a+ b)

and substitute u = e−t, a = 1− z and b = n+ 1, then one obtains∫ +∞

0
e−t(1− e−t)netzdt =

n!
(1− z)(2− z) . . . (n+ 1− z)

.

Moreover, one has

n!
(1− z)(2− z) . . . (n+ 1− z)

=
n!

(n+ 1)!
×

n∏
j=0

(1− z

j + 1
)−1

=
1

(n+ 1)
× exp(−

n∑
j=0

log(1− z

j + 1
))

=
1

(n+ 1)
× exp(

n∑
j=0

∞∑
k=1

zk

k(j + 1)k
)

=
1

(n+ 1)
exp(

∞∑
k=1

H
(k)
n+1

zk

k
)

=
∞∑

m=0

Pm(H(1)
n+1, . . . ,H

(m)
n+1)

n+ 1
zm (by (3)).

Thus (4) results by identification of the term in zm.

Example 2. For small values of m, one has

P1(Hn) = Hn ; P2(Hn,H
(2)
n ) =

(Hn)2

2
+
H

(2)
n

2
;

P3(Hn,H
(2)
n ,H(3)

n ) =
(Hn)3

6
+
HnH

(2)
n

2
+
H

(3)
n

3
.
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2.3 The Laplace-Borel transformation

We consider the vector space E of complex-valued functions f ∈ C1(]0,+∞[) such that

for all ε > 0, there exists Cε > 0 such that |f(t)| ≤ Cεe
εt for all t ∈ ]0,+∞[ .

In particular, a function f ∈ E satisfies the two following properties :

a) for all x with <(x) > 0, t 7→ e−xtf(t) is integrable on ]0,+∞[ ,

b) for all β with 0 < β < 1, t 7→ |f(t)| 1
tβ

is integrable on ]0, 1[ .

We recall now some basic properties (cf. [10]) of the Laplace transformation in this
frame which is appropriate for our purpose.

Definition 3. Let f be a function in E. The Laplace transform L(f) of f is defined by

L(f)(x) =
∫ +∞

0
e−xtf(t) dt for <(x) > 0 .

Proposition 2 (cf. [10]). Let E := L(E) be the image of E under L. If a is a function
in E , then

a) a is an analytic function of x in the half-plane <(x) > 0.

b) a(x)→ 0 when <(x)→ +∞.

c) L : E → E is an isomorphism.

Definition 4. Let a ∈ E . The Borel transform of a is the unique function â ∈ E such
that a = L(â). One has the two reciprocal formulas

â(t) =
1

2iπ

∫ c+i∞

c−i∞
ezta(z) dz for all c > 0 and t > 0 ,

and

a(x) =
∫ +∞

0
e−xtâ(t)dt for <(x) > 0 .

Proposition 3 (cf. [10]). If f ∈ E and g ∈ E, then f ∗ g ∈ E and

L(f ∗ g) = L(f)L(g) . (5)

Hence, if a ∈ E and b ∈ E then ab ∈ E since ab = L(â ∗ b̂).

Theorem 1. Let a be a function in E. Then the series∑
n≥1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1â(t)dt

converges and
∞∑

n=1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1â(t)dt =

∫ +∞

0
(

1
1− e−t

− 1
t
)e−tâ(t)dt . (6)
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Proof. By (2)∫ +∞

0
(

1
1− e−t

− 1
t
)e−tâ(t)dt =

∫ +∞

0

∞∑
n=1

λn

n!
(1− e−t)n−1e−tâ(t) dt .

In the right member, the order of
∫ +∞
0 and

∑∞
n=1 may be interchanged since∫ +∞

0

∞∑
n=1

∣∣∣∣λn

n!
(1− e−t)n−1e−tâ(t)

∣∣∣∣ dt =
∫ +∞

0

∞∑
n=1

λn

n!
(1− e−t)n−1e−t |â(t)| dt

=
∫ +∞

0
(

1
1− e−t

− 1
t
)e−t |â(t)| dt

and the convergence of this last integral follows from the assumption that a ∈ E .

Example 3. Let a(x) = 1
xs with <(s) ≥ 1. Then a ∈ E and â(t) =

ts−1

Γ(s)
. Hence

∞∑
n=1

λn

n!

∫ +∞

0
e−t(1− e−t)n−1 t

s−1

Γ(s)
dt =

∫ +∞

0
(

1
1− e−t

− 1
t
)e−t t

s−1

Γ(s)
dt

=

{
γ if s = 1
ζ(s)− 1

s−1 if s 6= 1

where γ refers to the Euler constant. In particular, since∫ +∞

0
e−t(1− e−t)n−1dt =

1
n

for each integer n ≥ 1 ,

then

γ =
∞∑

n=1

λn

n!
1
n
.

3 The operator D

Proposition 4. If a ∈ E , then the integral∫ +∞

0
e−t(1− e−t)x−1â(t)dt

converges for all x with <(x) > 0.

Proof. If a ∈ E and <(x) > 0, we may write for t ∈ ]0,+∞[,∣∣e−t(1− e−t)x−1â(t)
∣∣ ≤ e−te(1−<(x))(− log(1−e−t)) |â(t)| .
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The convergence when t→ +∞ results from the inequality

e−te(1−<(x))(− log(1−e−t)) |â(t)| ≤ e−t

1− e−t
|â(t)| ≤ 2e−t |â(t)| .

The convergence when t→ 0 results from the inequality

e(1−<(x))(− log(1−e−t)) ≤

{
1 si <(x) ≥ 1

1
(1−e−t)(1−<(x)) si 0 < <(x) < 1

since the function t 7→ e−t |â(t)| 1
(1−e−t)β is integrable at 0 for 0 < β < 1 by definition of

E.

Definition 5. Let a be a function in E . We call D(a) the function defined for all x with
<(x) > 0 by

D(a)(x) =
∫ +∞

0
e−t(1− e−t)x−1â(t)dt . (7)

Remark 1. a) By Theorem 1, the series
∑
n≥1

λn

n!
D(a)(n) converges and its sum is given

by formula (6).

b) The values of D(a) at positive integers may be computed directly without the recourse
to â. The development of (1− e−t)n by the binomial theorem gives

D(a)(n+ 1) =
n∑

k=0

(−1)k

(
n

k

)
a(k + 1) for all integer n ≥ 0. (8)

Definition 6. We call Λ the C1-diffeomorphism of R+ defined by Λ(u) := − log(1−e−u).
In particular, it is important to note that Λ is involutive :

Λ−1 = Λ .

Theorem 2. Let a be a function in E. Then the function D(a) ∈ E and, moreover,
verifies the relation

D̂(a) = â(Λ) (9)

where â(Λ) denotes â ◦ Λ.

Proof. The change of variables t = Λ(u) in (7) gives

D(a)(x) =
∫ +∞

0
e−xuâ(Λ(u)) du for <(x) > 0.

Thus, D(a) = L(â(Λ)). It remains to prove that D(a) ∈ E . One has only to check that
the function â(Λ) is in E. This function being in C1(]0,+∞[), it suffices to show that for
all ε > 0, the function u 7→ e−εu |â(− log(1− e−u))| is bounded on ]0,+∞[. This results
from the existence of Cε > 0 such that∣∣â(− log(1− e−u))

∣∣ ≤ Cε(1− e−u)ε for all u ∈ ]0,+∞[ .
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Example 4. Let a(x) = 1
xs with <(s) ≥ 1. Then â(t) =

ts−1

Γ(s)
. Thus, by (9),

D(
1
xs

) = L
(

Λs−1

Γ(s)

)
. (10)

If m is a natural number and s = m+ 1, then by (4) and (7)

D(
1

xm+1
)(n) = L

(
Λm

m!

)
(n) =

Pm(Hn, . . . ,H
(m)
n )

n
. (11)

By (8), one has also

D(
1

xm+1
)(n) =

n∑
k=1

(−1)k−1

(
n− 1
k − 1

)
1

km+1
.

Thus, from (11) and Dilcher’s formula (cf. [1] Proposition 11), one deduces the nice
identity

Pm(Hn,H
(2)
n , . . . ,H(m)

n ) =
n∑

k=1

(−1)k−1

(
n

k

)
1
km

=
∑

n≥n1≥···≥nm≥1

1
n1 . . . nm

. (12)

Remark 2. Theorem 2 may be summarized in the following diagram

E D−−−−→ EyL−1

xL
E

Λ?

−−−−→ E

where Λ?(â) := â(Λ). The algebraic properties of D are sum up in the following theorem.

Theorem 3. The operator D is an automorphism of E which verifies D = D−1 and lets

invariant the function x 7→ 1
x

.

Proof. We can write D = LΛ?L−1 and Λ? is an automorphism of E which verifies
Λ? = (Λ?)−1 since Λ = Λ−1. Furthermore

D(
1
x

) = L(1) =
1
x
.
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4 The function Fk

4.1 Series representation

Theorem 4. For all s in C with <(s) ≥ 1 and each natural number k, let

Fk(s) :=
∞∑

n=1

λn

n!nk
D

(
1
xs

)
(n) . (13)

Then, for all natural numbers m,

Fk(m+ 1) =
∞∑

n=1

λn

n!nk+1
Pm(Hn,H

(2)
n , . . . ,H(m)

n ) . (14)

Proof. By (11), one has D(
1

xm+1
)(n) =

Pm(Hn, . . . ,H
(m)
n )

n
.

Remark 3. Since F0(s) = ζ(s) − 1
s− 1

, then, in the case k = 0, (14) is nothing else

than Hermite’s formula for ζ (cf. [5]).

Corollary 1. Let ϑ(s) be the Dirichlet series defined for <(s) > 0 by

ϑ(s) :=
∞∑

n=1

λn

n!
1
ns
.

Then for each natural number k ≥ 1,

ϑ(k) = Fk−1(1) . (15)

Remark 4. By (1) and a tauberian theorem, one has ϑ(0) :=
∑∞

n=1

λn

n!
= 1.

Example 5.

F0(1) =
∞∑

n=1

λn

n!n
= γ = ϑ(1) ,

F0(2) =
∞∑

n=1

λnHn

n!n
= ζ(2)− 1 ,

F0(3) =
1
2

∞∑
n=1

λnH
2
n

n!n
+

1
2

∞∑
n=1

λnH
(2)
n

n!n
= ζ(3)− 1

2
,

F1(1) =
∞∑

n=1

λn

n!n2
= ϑ(2) ,

F1(2) =
∞∑

n=1

λnHn

n!n2
,

F1(3) =
1
2

∞∑
n=1

λnH
2
n

n!n2
+

1
2

∞∑
n=1

λnH
(2)
n

n!n2
.
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4.2 Integral representation

Theorem 5. For all s ∈ C with <(s) ≥ 1 and each natural number k,

Fk(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
fk(1− e−t) dt with fk(z) :=

∞∑
n=1

λn

n!
zn

nk
. (16)

Proof. Since D(
1
xs

) = L
(

Λs−1

Γ(s)

)
, we deduce from (13) that

Fk(s) =
1

Γ(s)

∫ +∞

0
fk(e−u)(Λ(u))s−1du

and the representation (16) results from the change of variables t = Λ(u).

The fact that Fk may be represented by a Mellin transform enables to analytically
continue this function outside its half-plane of definition by a standard analytic method
(cf. [11] section 6.7).

Theorem 6. The function Fk analytically continues in the whole complex plane as an
entire function.

Proof. The function z 7→ 1
log(1− z)

+
1
z

being analytic in the disc D(0, 1) with a singu-

larity at 1, we deduce from (1) that the radius of convergence of the series
∑∞

n=1

λnz
n

n!
is equal to 1. Thus 1 is also the radius of convergence of the serie

∑∞
n=1

λnz
n

n!nk
which

defines an analytic function fk in the disc D(0, 1). Hence, the function

gk : t 7→ fk(1− e−t)

is analytic for all t ∈ C such that 1− e−t ∈ D(0, 1). Since 1− e0 = 0, it follows that gk

is analytic in a neighbourhood of 0. Since gk(0) = 0, the function t 7→ gk(t)
e−t

1− e−t
is

itself analytic in a neighbourhood of 0. It follows that its Mellin transform analytically
continues in the complex plane with simple poles at negative integers which are all
cancelled by the poles of Γ.

Theorem 7. For all s with <(s) > 1 and each integer k ≥ 1,

Fk(s) = ϑ(k)ζ(s)+
k∑

j=1

(−1)jϑ(k−j)Zj(s)+(−1)k 1
Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t
T k

(
e−t − 1

t

)
dt

(17)
with

Zj(s) :=
∑

n>n1>n2>···>nj>0

1
nsn1n2 . . . nj

(18)
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and T is the operator defined by

Tf (t) :=
∫ +∞

t

e−u

1− e−u
f(u)du . (19)

Proof. The theorem results from the integral representation (16) and the two following
lemmas.

Lemma 1. Let T be the operator defined by (19). Then for all t > 0,

fk(1− e−t) =
k∑

j=0

(−1)jϑ(k − j)Λ
j (t)
j!

+ (−1)kT k(
e−t − 1

t
) .

Proof. Let gk(t) := fk(1− e−t). The function gk verifies the recursive relation

g′k(t) = e−tf ′k(1− e−t) =
e−t

1− e−t
fk−1(1− e−t) =

e−t

1− e−t
gk−1(t)

Thus

gk(t) =
∫ t

0

e−u

1− e−u
gk−1(u)du = gk(+∞)−

∫ +∞

t

e−u

1− e−u
gk−1(u)du

with
gk(+∞) = fk(1) = ϑ(k).

Thus, one has

gk(t) = ϑ(k)−
∫ +∞

t

e−u

1− e−u
gk−1(u)du = ϑ(k)− T (gk−1) .

A repeated iteration k times of this relation gives

gk(t) =
k−1∑
j=0

ϑ(k − j)(−1)jT j (1) + (−1)kT k(g0) .

Now, by (2),

g0(t) =
∞∑

n=1

λn(1− e−t)n

n!
=
e−t − 1

t
+ 1 ,

and thus

T k(g0) = T k(
e−t − 1

t
) + T k(1) .

Hence

gk(t) =
k−1∑
j=0

ϑ(k − j)(−1)jT j (1) + (−1)kT k(1) + (−1)kT k(
e−t − 1

t
) .

11



Since ϑ(0) = 1, one deduces that

gk(t) =
k∑

j=0

ϑ(k − j)(−1)jT j (1) + (−1)kT k(
e−t − 1

t
)

and, now, it remains to prove that

Λj (t)
j!

= T j(1)

which follows from the recursive relation

Λj (t)
j!

= −
∫ t

+∞

e−u

1− e−u

Λj−1 (u)
(j − 1)!

du = T

(
Λj−1

(j − 1)!

)
.

Lemma 2. Let Zj(s) defined by (18). Then, for all s ∈ C with <(s) > 1,

Zj(s) =
1

Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t

Λj (t)
j!

dt .

Proof. From the recursive relation

∂
Λj (t)
j!

=
Λj−1 (t)
(j − 1)!

∂Λ(t) = − e−t

1− e−t

Λj−1 (t)
(j − 1)!

= −
∑
m>0

e−mt Λj−1 (t)
(j − 1)!

,

and Λ(t) =
∑
n>0

e−nt

n
, one may check by induction on j that

Λj (t)
j!

=
∑

n1>n2>...>nj>0

e−n1t

n1

1
n2
· · · 1

nj
.

Furthermore, one has

1
Γ(s)

∫ +∞

0
ts−1e−Nt e−t

1− e−t
dt =

∑
n>N

1
ns

(for <(s) > 1) .

Hence

1
Γ(s)

∫ +∞

0
ts−1 e−t

1− e−t

Λj (t)
j!

dt =
∑

n>n1>n2>···>nj>0

1
ns

1
n1

1
n2
· · · 1

nj
= Zj(s) .

12



4.3 Identities linking Cauchy numbers, harmonic numbers and zeta
values

From Theorem 4 and Theorem 7 gathered together, we immediately deduce the following
theorem.

Theorem 8. For all integers q ≥ 2,

F0(q) =
∞∑

n=1

λn

n!n
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) = ζ(q)− 1
q − 1

, (20)

and for k ≥ 1,

Fk(q) =
∞∑

n=1

λn

n!nk+1
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) =

ϑ(k)ζ(q) +
k∑

j=1

(−1)jϑ(k − j)Zj(q) + (−1)k 1
Γ(q)

∫ +∞

0
tq−1 e−t

1− e−t
T k

(
e−t − 1

t

)
dt .

(21)

In particular,

F1(q) =
∞∑

n=1

λn

n!n2
Pq−1(Hn,H

(2)
n , . . . ,H(q−1)

n ) =

∞∑
n=1

log(n+ 1)
nq

+ γζ(q) + ζ(q + 1)−
∞∑

n=1

Hn

nq
−

q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k

. (22)

Proof. Formula (21) results from (17) and (14). We apply now (21) with k = 1. This
gives

F1(q) = γζ(q)−
∑
n≥1

Hn−1

nq
+

1
Γ(q)

∫ +∞

0
tq−1 e−t

1− e−t
E1(t)dt

with E1(t) := −Ei(−t) =
∫ +∞

t

e−u

u
du. Thus,

F1(q) = γζ(q)−
∑
n≥1

Hn

nq
+ ζ(q + 1) + I(q)

where

I(q) =
1

Γ(q)

∫ +∞

0
tq−1 e−t

1− e−t
E1(t)dt =

1
Γ(q)

∞∑
n=1

∫ +∞

0
e−nttq−1E1(t)dt .

Since

E1(t) = −γ − log t+
∞∑

n=1

(−1)n−1

n

tn

n!
,

13



and −γ − log t = l̂og x
x (cf. [10]), then E1 = ̂log(x+1)

x . Thus∫ +∞

0
e−nttq−1E1(t)dt = (−1)q−1

(
log(x+ 1)

x

)(q−1)

(n) .

Hence, by a calculation of the (q − 1)th derivative, we get

I(q) =
(−1)q−1

(q − 1)!

∞∑
n=1

(
log(x+ 1)

x

)(q−1)

(n) =
∞∑

n=1

log(n+ 1)
nq

−
q−1∑
k=1

1
k

∞∑
n=1

1
(n+ 1)knq−k

.

Remark 5. 1) We recall Euler’s formula (cf. [4])

∞∑
n=1

Hn

n2
= 2ζ(3) , and

∞∑
n=1

Hn

nq
=

1
2
(q+2)ζ(q+1)− 1

2

q−2∑
k=1

ζ(k+1)ζ(q−k) for q > 2 .

2) From
∞∑

n=1

1
(n+ 1)n

= 1 and the decomposition

1
(n+ 1)knq−k

=
1

(n+ 1)k−1nq−k
− 1

(n+ 1)knq−k−1
(0 < k < q) ,

the series
∞∑

n=1

1
(n+ 1)knq−k

may be expressed as a linear combination of zeta values

and integers.

Example 6.

∞∑
n=1

log (n+ 1)
n2

+ γζ(2)− ζ(3)− 1 =
∞∑

n=1

λnHn

n!n2
,

∞∑
n=1

log (n+ 1)
n3

+ γζ(3)− 1
10
ζ(2)2 − 1

2
ζ(2) =

1
2

∞∑
n=1

λnH
2
n

n!n2
+

1
2

∞∑
n=1

λnH
(2)
n

n!n2
,

∞∑
n=1

log (n+ 1)
n4

+ γζ(4)− 2ζ(5) + ζ(2)ζ(3)− 2
3
ζ(3) +

1
3
ζ(2)− 1

2
=

1
6

∞∑
n=1

λnH
3
n

n!n2
+

1
2

∞∑
n=1

λnHnH
(2)
n

n!n2
+

1
3

∞∑
n=1

λnH
(3)
n

n!n2
.
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4.4 Link with the Ramanujan summation

The function Fk has strong connections with Ramanujan summation (cf. [2], [3]).

Definition 7. Let a be a function in E = L(E). The Ramanujan sum of the series∑
n≥1 a(n) is defined by

R∑
n≥1

a(n) :=
∞∑

n=1

λn

n!
D(a) (n) . (23)

Proposition 5. If a and b are in E , then â(Λ) ∗ b̂(Λ) ∈ E.

Proof. From the definition of the convolution product, one may write(
â(Λ) ∗ (̂b(Λ)

)
(t) =

∫ t

0
â(Λ(u))̂b(Λ(t− u))du .

Now, for all ε > 0, there exists Cε > 0 and Dε > 0 such that∣∣â(− log(1− e−u))
∣∣ ≤ Cε(1− e−u)ε and∣∣∣̂b(− log(1− e−(t−u)))
∣∣∣ ≤ Dε(1− e−(t−u))ε for all u ∈ ]0,+∞[ .

It follows that ∣∣∣(â(Λ) ∗ b̂(Λ))(t)
∣∣∣ ≤ CεDε

∫ t

0
(1− e−u)ε(1− e−(t−u))εdu .

One has also∫ t

0
(1− e−u)ε(1− e−(t−u))εdu =

(
1− e−t

)1+2ε
∫ 1

0
uε (1− u)ε 1

(1− (1− e−t)u)ε+1
du

≤
(
1− e−t

)1+2ε
∫ 1

0

1
(1− (1− e−t)u)ε+1

du ≤
(
1− e−t

)1+2ε etε − 1
(1− e−t)ε

≤
(
1− e−t

)2ε etε − 1
ε

≤ etε

ε
.

Hence,
∣∣∣(â(Λ) ∗ b̂(Λ))(t)

∣∣∣ ≤ CεDε
etε

ε , which proves that this function belongs to E as
required.

Definition 8. Let a and b two functions in E . The Λ-convolution product â~ b̂ of â and
b̂ is defined by

â~ b̂ = Λ?(Λ?(â) ∗ Λ?(̂b))

(or equivalently since Λ? = (Λ?)−1)

(â~ b̂)(Λ) = â(Λ) ∗ b̂(Λ) ,

and the harmonic product a on b of a and b by

a on b = L(â~ b̂) .
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Remark 6. The Λ-convolution product and the harmonic product inherit of the alge-
braic properties of the ordinary convolution product i.e. bilinearity, commutativity and
associativity. This construction may be summarized in the following diagram

(a, b) −−−−→ (â, b̂) −−−−→ (â(Λ), b̂(Λ))y y y
a on b ←−−−− â~ b̂ ←−−−− â(Λ) ∗ b̂(Λ)

Theorem 9. Let a and b in E. Then,

D(a on b) = D(a)D(b) (24)

and
D(ab) = D(a) on D(b) . (25)

Proof. One recalls (cf. Theorem 3) that

D = LΛ?L−1 .

Hence
D(a on b) = LΛ?L−1(a on b) = LΛ?(â~ b̂) = L(Λ?(â) ∗ Λ?(̂b))

and it follows from (5) and (9) that

L(Λ?(â) ∗ Λ?(̂b)) = L(Λ?(â))L(Λ?(̂b)) = D(a)D(b)

which proves (24). Moreover, (24) enables to write

D(D(a) on D(b)) = D2(a)D2(b) = ab (since D = D−1),

and so
D(a b) = D2(D(a) on D(b)) = D(a) on D(b)

which proves (25).

Corollary 2. Let a and b in E. Then

R∑
n≥1

(a on b)(n) =
∞∑

n=1

λn

n!
D(a)(n)D(b)(n) , (26)

R∑
n≥1

(ab)(n) =
∞∑

n=1

λn

n!
(D(a) on D(b)) (n) .

Remark 7. The values of (a on b)(n) may be computed without the recourse to â and
b̂. By elementary transformations, it can be shown that

(a on b)(n+ 1) =
∫ +∞

0

∫ +∞

0
(e−t−s)(e−t + e−s − e−te−s)nâ(t)̂b(s)dtds .
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Hence, if the numbers Ck,l
n are defined by

(X + Y −XY )n =
∑

0≤k≤n
0≤l≤n

Ck,l
n XkY l ,

then, one has the following explicit formula

(a on b)(n+ 1) =
∑

0≤k≤n
0≤l≤n

Ck,l
n a(k + 1)b(l + 1) .

The name “harmonic product” is justified by the following harmonic property :(
1
x

on a

)
(n) =

1
n

(
n∑

k=1

a(k)

)
.

This harmonic property results from the equalities

1
x

on a =
∫ +∞

0
e−xu

(∫ +∞

u
â(t)

e−t

1− e−t
dt

)
du

=
∫ +∞

0

(∫ t

0
e−xudu

)
â(t)

e−t

1− e−t
dt

=
1
x

∫ +∞

0
(1− e−xt)â(t)

e−t

1− e−t
dt

=
A(x)
x

with A(x) =
∫ +∞

0

e−xt − 1
e−t − 1

e−tâ(t)dt .

Theorem 10. Let (
1
x

)onk

:=
1
x

on
1
x

on · · · on 1
x︸ ︷︷ ︸

k

(k = 1, 2, · · · )

where
1
x

denotes (improperly) the function x 7→ 1
x

. Then, for all natural numbers m,

(
1
x

)on(m+1)

= D(
1

xm+1
) = L

(
Λm

m!

)
. (27)

Proof. By (25) we have

D(
1

xm+1
) = D(

1
x
. . .

1
x︸ ︷︷ ︸

m+1

) =
(
D(

1
x

)
)on(m+1)

=
(

1
x

)on(m+1)

since D(
1
x

) =
1
x
.

Thus, (27) results from (10).
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Example 7.

1
x

on
1
x

= D(
1
x2

) = L(Λ) =
H(x)
x

with H(x) := ψ(x+ 1) + γ,

ψ denoting the logarithmic derivative of Γ. In particular, for each integer n ≥ 1(
1
x

on
1
x

)
(n) =

H(n)
n

=
Hn

n
.

Theorem 11. for all s ∈ C with <(s) ≥ 1, one has

F0(s) =
R∑

n≥1

1
ns

and Fk(s) =
R∑

n≥1

((
1
x

)onk

on
1
xs

)
(n) for k ≥ 1 . (28)

Proof. By (13), (23), (26) and the invariance of
1
x

by D, one may write

R∑
n≥1

((
1
x

)onk

on
1
xs

)
(n) =

∞∑
n=1

λn

n!
D

((
1
x

)onk
)

(n)D
(

1
xs

)
(n)

=
∞∑

n=1

λn

n!

(
1
x

)k

(n)D
(

1
xs

)
(n)

=
∞∑

n=1

λn

n!nk
D

(
1
xs

)
(n) = Fk(s) .

In particular, by (11) and (27), one deduces from (28) the following identity :

Corollary 3. For each natural number k,

Fk(1) = ϑ(k + 1) =
∞∑

n=1

λn

n!
1

nk+1
=

R∑
n≥1

Pk(Hn,H
(2)
n , . . . ,H

(k)
n )

n
. (29)

Example 8.

ϑ(1) =
∞∑

n=1

λn

n!n
=

R∑
n≥1

1
n

= γ ,

ϑ(2) =
∞∑

n=1

λn

n!n2
=

R∑
n≥1

Hn

n
,

ϑ(3) =
∞∑

n=1

λn

n!n3
=

1
2

R∑
n≥1

H2
n

n
+

1
2

R∑
n≥1

H
(2)
n

n
.

Remark 8. Comparing (20) (applied with q = k+1) with (29) above, one may observe
a kind of duality between Fk(1) and F0(k+1). This results from the fact that D = D−1.
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