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1 Introduction

It is well known since the second-half of the 19th century that the Riemann zeta function
may be represented by the (normalized) Mellin transform

C()—1/+Oots_letdt for R(s) > 1
T et @ Ore~

and from late works of Hermite (cf. [8]) that one has also

1 1 +00 -t =\ B
C(S) - 8—71 = 1_‘(8)/0 ts_lliie—t (Z m(l — e t)”) dt for §R(S) > 1,



1 1
where \; = B and \p,41 = / (1l —x)---(n — z)dzr are the (non-alternating) Cauchy
0

numbers.
Improving Hermite’s idea, one may, more generally, consider Mellin transforms of

type

1 too et _
F(S):F(s)/o t Wf(l—e Y at

Zn
with f(2) = > 77 w,— for suitable sequences (wy)n>1 of rational numbers. The sim-
" >

plest interesting case w, = 1 corresponds to the Arakawa-Kaneko zeta function and has

been studied in [6]. In this article, we investigate the case w, = — i.e. we study the

n!
function
1 +00 eft 0 A, 2"
F = — s=l_—  f(1l—et ith = MLl =0,1,2,...
)= g | e i ) = 3D T (= 01,20,

which is a priori defined in the half-plane R(s) > 1 but analytically continues in the
whole complex s-plane (Theorem 6). For k£ = 0, one must keep in mind that Fy(s) is

1

nothing else than ((s) — 1
5 —

An evaluation by two different ways of the values Fj(q) at positive integers ¢ leads

to a class of new identities linking Cauchy numbers, harmonic numbers and zeta values

(Theorem 8) which naturally extends Hermite’s formula for ¢ (cf. [5]) i.e.

Fola) = D i Py (s B, D) = Cla) = =
n=1

where the polynomials P,, are the modified Bell polynomials defined by the generating

function
) Sk oo
eXp(Zxk?): me(l'l, 7$m) Zm7
k=1 m=0

and HT(Lm) are the harmonic numbers. In the simplest case k = 1, one obtains in particular
the following relation

o0

An _
Fl(Q):ZT“nQPq 1(HH>H( ) aH7(Lq 1)):
n=1
> log(n + 1) = 1
> +VC(Q)+C(q+1)—ZnZ T era sy n+1knqk
n=1 n=1 k=1 n:l

oo
H
For example, for ¢ = 2, since P;(H,) = H, and Z » = 2((3), then the previous

relation may be written

A H, K1 1
o Mt 50D e 3 -1,
n=1 : n=1




and generalizes
o0

> Mndln_ ) 1.

nln

n=1
The function Fj has also an interesting interpretation in terms of Ramanujan sum-
mation (cf. [2]) as underscored by Theorem 11. In particular, one shows the identity

0 R (2) (k)
A 1 P.(H,,Hy",...,Hy")
Fk(l)zzmnmzz n
n=1 n>1

where, in the right member, Zle denotes the sum (in the sense of Ramanujan) of the
divergent series. This raises a kind of “duality” between Fj (1) and Fy(k + 1).

2 Preliminaries

2.1 The non-alternating Cauchy numbers

Definition 1. The Cauchy numbers (cf. [9]) are the rational numbers %, defined for
all natural numbers m by the exponential generating function :

m z

z
E bm— = ———.
|
= m log(1 + 2)
Let A\pt1 := (—=1)"%n+1, then \,41 > 0, and changing z in —z, we get the following

relation ) ) )
- 4= ntl on. 1
log(1—2) =z T;J (n+1)! (1)

For z =1 — et and t > 0, this relation may be rewritten

1 N W o1
e D D L @
n=1

For each integer n > 1, we will call A,, the nth non-alternating Cauchy number.

Example 1. The first non-alternating Cauchy numbers are

1 1 1 19 9
1 2,2 673 474 30 4

I
>
(@28

|

2.2 The modified Bell polynomials and the harmonic numbers

Definition 2. The modified Bell polynomials (cf. [7]) are the polynomials P,, defined
for all natural numbers m by Py = 1 and the generating function

k
exp Zxk% =1+ Z Po(x1, ey iy) 2™ (3)

k>1 m>1



Proposition 1. For all natural numbers m, and each integer n > 1,

[ L U
0 m! n

with .
= Z im and H, := H,(Ll) .

Proof. One starts from the classical Euler’s relation :

' a

and substitute v = ¢!, a = 1 — z and b = n + 1, then one obtains

oo —t —t\n _tz n!
/0 e (L—e)%e dt:(1—z)(2—z)...<n+1—z)'

Moreover, one has

n! n! z _
1-2)(2-2)...(n+1—2) :(n—l—l)! X]H(l_jﬂ) 1

7=0 k=1
1 > (k) 2k
= exp(p _H,p17-)
(n+1) — k

Thus (4) results by identification of the term in 2.

Example 2. For small values of m, one has

P(H,) = H,,; Po(H,, H?) = "

Pg(Hn, H7(L2)7 Hr(LS)) =



2.3 The Laplace-Borel transformation

We consider the vector space E of complex-valued functions f € C1(]0, +oc[) such that
for all € > 0, there exists Ce > 0 such that |f(¢)| < C.e for all t € |0, +o00] .

In particular, a function f € E satisfies the two following properties :

a) for all x with R(x) > 0, t — e~ f(t) is integrable on ]0, +-o0[,

b) for all 8 with 0 < 8 < 1, t — |f(t)] t% is integrable on ]0,1].

We recall now some basic properties (cf. [10]) of the Laplace transformation in this
frame which is appropriate for our purpose.

Definition 3. Let f be a function in E. The Laplace transform L(f) of f is defined by

L) (@) = /O T w0y dt for R(x) > 0.
Proposition 2 (cf. [10]). Let £ := L(F) be the image of F under L. If a is a function
in £, then
a) a is an analytic function of z in the half-plane R(z) > 0.
b) a(z) — 0 when R(x) — +oo.
c) L: E — £ is an isomorphism.

Definition 4. Let a € £. The Borel transform of a is the unique function a € E such
that @ = £(@). One has the two reciprocal formulas

R 1 c+1i00
a(t) = / e*a(z)dz forallec>0andt >0,
2im c—100

and oo
a(z) = / e~ a(t)dt  for RN(x) > 0.
0

Proposition 3 (cf. [10]). If f € E and g € E, then f*g € E and
L(f *g) = L£(f) L(g)- (5)

Hence, if @ € £ and b € £ then ab € £ since ab = E(’d*/\).
Theorem 1. Let a be a function in £. Then the series
3 A [T —tyn—1a
— e (1—e )" a(t)dt
n! 0
n>1

converges and

00 +00 +00
Z% /0 et(1 — e )" la(t)dt = /0 (— —%)e‘ta(t)dt- (6)
n=1




Proof. By (2)

/ T Y et = / o i nle~tG(e) dt
0 1-— e_t t o 0 n' ’

In the right member, the order of f0+°° and y 2 | may be interchanged since

[ xhe

1t e Oo tyn—1_—t

n — A n —t\n—1_ —t |~

n' )dt / n— (I—e )" e "a(t)| dt
1

L
- [ <1i€,t—;> ) d

and the convergence of this last integral follows from the assumption that a € £.

s—1

I(s)

x A +o00 . ts—l +o00 1 1 7fs—l
2n —t1 _ eyl dt—/ R P dt

nz:l n! /0 e (l—e) I'(s) 0 (1 —et t)e I'(s)

K ifs=1
) - L ifs#£1

where « refers to the Fuler constant. In particular, since

Hence

Example 3. Let a(z) = & with R(s) > 1. Then a € £ and @(t) =

+o0 1
/ e t(1—e Y 1dt = = for each integer n > 1,
0 n

then

:\H

=3
3 The operator D

Proposition 4. If a € £, then the integral

+oo
/ et — e~y LG8 dt
0
converges for all z with R(z) > 0.
Proof. If a € £ and R(z) > 0, we may write for ¢ € ]0, +00],

’e_t(l _ e—t)z—la(t)‘ < e—te(l—ﬂ%(x))(—log(l—e_t)) ’a(t” ]



The convergence when ¢ — 400 results from the inequality

eft

—t_(1-R(z))(—log(1—e~ %)) |~
e~ te(1=R(@))(— log( ))‘a(t)lgl—ie—t

ja(t)] < 2¢7" fa(t)] -
The convergence when t — 0 results from the inequality

1 si R(z) > 1

e(1=R(2))(~ log(1—e™"))
> 1 .
e HaT=Gn si0< R(z) <1

since the function t — e~ |a(t)] ﬁ is integrable at 0 for 0 < 3 < 1 by definition of

E. O

Definition 5. Let a be a function in £. We call D(a) the function defined for all « with
R(x) > 0 by

D(a)(z) = /0 T et — ety alyd. (7)

A
Remark 1. a) By Theorem 1, the series g %D(a)(n) converges and its sum is given
n!
n>1

by formula (6).

b) The values of D(a) at positive integers may be computed directly without the recourse
to @. The development of (1 —e~%)" by the binomial theorem gives

D(a)(n+1) = i(—l)k (Z)a(k +1) for all integer n > 0. (8)
k=0

Definition 6. We call A the C!-diffeomorphism of R, defined by A(u) := —log(1—e™%).
In particular, it is important to note that A is involutive :

A=A,
Theorem 2. Let a be a function in E. Then the function D(a) € € and, moreover,
verifies the relation
D(a) =a(A) (9)
where a(A) denotes ao A.

Proof. The change of variables t = A(u) in (7) gives
+oo
D(a)(z) = / e "a(A(u))du for R(z) > 0.
0

Thus, D(a) = L(a(A)). It remains to prove that D(a) € £. One has only to check that
the function @(A) is in E. This function being in C!(]0, +-00]), it suffices to show that for
all € > 0, the function u +— e~¢"|a(—log(1 — e™"))| is bounded on ]0, +oco[. This results
from the existence of C. > 0 such that

|a(—log(1—e™))| < C.(1—e ™) for all u € ]0,+o0] .



s—1

t
Example 4. Let a(z) = - with R(s) > 1. Then a(t) = . Thus, by (9),

I'(s)

D(%) ) <11§(;)1> . (10)

If m is a natural number and s = m + 1, then by (4) and (7)

1 (Am> () = Po(H,,..., H™) | an

D(W)(n) = i n

By (8), one has also
1 = w1 (n—1\ 1
D)) =D (17 ) -
k=1

Thus, from (11) and Dilcher’s formula (cf. [1] Proposition 11), one deduces the nice
identity

Pm(Hn,H;P,...,H?gm)):i(q)k—l@)];ﬂ: > L

k=1 n>ni > cng>1 LM

Remark 2. Theorem 2 may be summarized in the following diagram

e 2. ¢

lﬁ’l Tﬁ

E-2.F
where A*(a) := a(A). The algebraic properties of D are sum up in the following theorem.
Theorem 3. The operator D is an automorphism of € which verifies D = D™ and lets

. . ) 1
mwvariant the function x — —.
T

Proof. We can write D = LA*L~' and A* is an automorphism of E which verifies
A* = (A*)~! since A = A=, Furthermore



4 The function F}.

4.1 Series representation

Theorem 4. For all s in C with R(s) > 1 and each natural number k, let

SN 1
A= Y e (5] ) (13)
n=1
Then, for all natural numbers m,
o) )\n .
Fr(m +1) :ZWPm(Hn,H§LQ),...,H,(L Y. (14)

I
[

1
Proof. By (11), one has D(——=)(n)
T

1
Remark 3. Since Fy(s) = ((s) — P then, in the case k = 0, (14) is nothing else
5 —
than Hermite’s formula for ¢ (cf. [5]).

Corollary 1. Let ¥(s) be the Dirichlet series defined for R(s) > 0 by

[e.9]

An 1
V(s) := ——.
(5) nzz:l n! ns
Then for each natural number k > 1,
(k) = Fr-1(1). (15)
An
Remark 4. By (1) and a tauberian theorem, one has 9(0) := > >, i 1.
Example 5.
R1) =30 — o)
“—nln ’
o Ay
R =3 S =) -1,
IS NH2 1N HP 1
Fo(3) _2; nln 2 —  nln =B) - 27
oo )\n
Fi(1) :Zln‘ng =9(2),
— A\ H,
R :Z nin? ’
n=1
TS A H2 1A N HY
Fi(3) == noy - e
13) 2; n!n?2 * 2; n!n?2



4.2 Integral representation

Theorem 5. For all s € C with R(s) > 1 and each natural number k,

Fuls) = —— /+°°t5—1€t B de with i)=Y )
PTG o 1—et’* W = nlnk
Proof. Since D(-=) = £ (XY we deduce from (13) that
roof. Sinc —)=L| —=— ), we deduce from
xs I'(s) )’
1 [t 1
Fi(s) = fe(e™)(A(u))’ du
=57 [ SleAw)

and the representation (16) results from the change of variables t = A(u). O

The fact that F} may be represented by a Mellin transform enables to analytically
continue this function outside its half-plane of definition by a standard analytic method
(cf. [11] section 6.7).

Theorem 6. The function Fy analytically continues in the whole complex plane as an
entire function.

1

Proof. The function z — ———
log(1 — z)

1

+ — being analytic in the disc D(0,1) with a singu-
z

An 2™
n!

which

larity at 1, we deduce from (1) that the radius of convergence of the series y |
Apz™
is equal to 1. Thus 1 is also the radius of convergence of the serie Y 7, %
nln
defines an analytic function fi in the disc D(0, 1). Hence, the function

ge it frl—e™)

is analytic for all ¢ € C such that 1 —e~* € D(0,1). Since 1 — €? = 0, it follows that gy,
—t

e
is analytic in a neighbourhood of 0. Since gx(0) = 0, the function ¢ — g () ot is
—e
itself analytic in a neighbourhood of 0. It follows that its Mellin transform analytically
continues in the complex plane with simple poles at negative integers which are all

cancelled by the poles of I'. O
Theorem 7. For all s with R(s) > 1 and each integer k > 1,

k

+o0 e—t e—t _
Fi(s) :ﬁ(k)q(s)JrZ(1)j19(kj)Zj(5)+(1)k1/0 £ Tk( 7 1> dt

I'(s)

with

IO TN E—— (18)

nsning...n;
n>ni>ng>->n;>0 1762 J

10



and T is the operator defined by

1—e ¥

TF(t) = /:OO " ). (19)

Proof. The theorem results from the integral representation (16) and the two following
lemmas.

Lemma 1. Let T" be the operator defined by (19). Then for all ¢ > 0,
t_1

()T

A (t)
4!

k
fel =) = (=1)0(k — j) ).

Jj=0

Proof. Let gi(t) := fr(1 — e t). The function gy, verifies the recursive relation

_ _ et _ et
Golt) = (1= = (=) = T g ()
Thus
t e U +oo e
gr(t) = / T o—uIe—1(w)du = gy (+00) —/ —gr—1(u)du
o L—e ¢ 1—e
with

Thus, one has

+00 e U
o) =00 = [ T a(wdu = 90) = Tlgir).

A repeated iteration k times of this relation gives

k—
g(t) =Y Ok = j)(=1)/T7 (1) + (=1)*T*(g0)

—_

<

Now, by (2),
QO(t)_Z)\nu;f ) _e t—l v,
n=1 :
and thus -
TH(go) = TH(E— =) + TH(1)
Hence
k—1 o et 1
g(t) = 0k — ) (=1)/T7 (1) + (=) T*(1) + (= 1)*T*( )

11



Since ¥(0) = 1, one deduces that

e t—1
t

gr(t) = Zﬁ(k’—j)(—l)jTj(l)+(—1)ka( )

k
§=0
and, now, it remains to prove that
A (t)
4!

=T9(1)

which follows from the recursive relation

M) et M)
i Lml—aﬂu—nfi‘T<u—nJ'

Lemma 2. Let Z;(s) defined by (18). Then, for all s € C with R(s) > 1,

L et N

Proof. From the recursive relation

AN () N7H@) et ATL(1) e ML)
8 - = " aA t) = — 3 - - € m . )
IRV e A e sy R DU ey
e ™ . . :
and A(t) = Z , one may check by induction on j that

n>0

ny no nj .

A () et 1 1
[T Z
ni>ng>...>n;>0
Furthermore, one has
1 +o0 e—t 1
— 5l N~ dt = —  (for R(s) > 1).
F(s)/o C 1 et n>Zan (for %(s) > 1)

Hence

1 oo —t AJ 111 1
)/O po=1_C .(t)dt: > — = Z(s).

I'(s 1—et 4! nsnin 7
( J n>ni>ng>->n;>0 112 J

12



4.3 Identities linking Cauchy numbers, harmonic numbers and zeta
values

From Theorem 4 and Theorem 7 gathered together, we immediately deduce the following
theorem.

Theorem 8. For all integers q > 2,

o0

A 1
Fo(q) = 2P, (Hy HP, ... HIY) =((q) — — 20
O(q) ;n‘n q 1( s Ly 7y s Ly ) C(Q) q—l’ ( )
and for k > 1,
F()_iﬁp (H,, H? H=1) =
o _n:1n!nk+1 q—1Un, Hy 7y oo Hp =
k ; e 1 +°°q1 et i e t—1
Ik 1)k —4)Z; 1) —— ti— T dt .
(¥ + D100 20 + e A e ey
(21)
In particular,
F()—i A p (H,, H? HY) =
1\q _n:1 n!n2 q—1 nyddpn IRy -
oo -1 oo
log(n + 1) n w1 1
H-S 2§ 22
2T @)= S8 Y D e 22

Proof. Formula (21) results from (17) and (14). We apply now (21) with £ = 1. This
gives

Hn—l 1 —+00 1 e—t
Fi(q) = ¢(q) — Z v (g t WEl(t)dt
n>1 q) Jo

u

+oo —u
with E1(t) := —Ei(—t) = / ¢ du. Thus,
t

Fi(g) =¢(q) — Z% +((g+1)+ I(q)

n>1

where

+o0 et
I(q) = F(lq)/o tq_ll_ie_t 1}2/ e IR (t)dt .

Since
n 1 tn

Ei(t) = —y — logt+z

13



—

and —y — logt = 10% (cf. [10]), then E; M Thus

0o (¢-1)
/+ e I B (1)t = (—1)1" 1<1°g(“1)> .
0

X

Hence, by a calculation of the (¢ — 1)th derivative, we get

log(z + 1)\ @V log(n+1) <11 1
I(q) = = it =A S M - - -
0= () = S
O
Remark 5. 1) We recall Euler’s formula (cf. [4])
00 H 00 q
— = 2(( — = 2)C(qg+1)— C(k+1)¢ f 2.
;nz ¢(3), ;n q+ Clg+1) ;:: + —k) forg>
— 1
2) From nz_:l m =1 and the decomposition
1 1 1
= - (0<k<q),

(n+ 1)kni=Fk  (n+ 1)k 1ns=k  (n41)kpa—k-1

the series Z W may be expressed as a linear combination of zeta values

and integers.

Example 6.
X log (n+1) — AnHy
nz:lng‘i"YC(z)_C(B)_l —nz:ln!ngv
Zlog (n+1) 1 A H2 1 = )\nHT(ZQ)
;ng $90(3) — 150(2)” — 5¢(2) = g M 2; EeRE
Zilog (Zf Y ) - 2¢(5) + ¢2)c(3) — §C(3) + %C@) - % =
n=1

AMHHP 1S A HY
72 n'n2 Z nln? +3231 nin?

14



4.4 Link with the Ramanujan summation
The function Fj has strong connections with Ramanujan summation (cf. [2], [3]).

Definition 7. Let a be a function in &€ = L(F). The Ramanujan sum of the series
> n>1a(n) is defined by

R o) A
ZymyZEJﬁDmﬂm. (23)
n>1 n=1

Proposition 5. If a and b are in &, then G(A)  b(A) € E.

Proof. From the definition of the convolution product, one may write

(aM*@mQuyi[aMmﬁm@—wmw
Now, for all € > 0, there exists C. > 0 and D, > 0 such that
[a(—log(1—e™))| < C-(1—¢ ") and
‘B(— log(1 — e*(t*“)))‘ < D.(1 — e WY for all u € )0, +o0| .
It follows that
@) B < .. [ (1= e e

One has also

t 1
—eU)E(1 — e—(t—u) Edu — _ et 1+2¢ W (1 — ) 1 u
f e = (e [ 0 e

1 1 149 eta_l
<(1- —tH%/ du< (1—et)yite_¢ =0
= ( € ) o (I—(1—etu)tt U= ( € ) (1—et)e

te te
2. ¥ — 1 e
< —.
€ €

<(1-e)

~

(@(A) = b(A))(t)‘ < C’EDE%, which proves that this function belongs to E as
required. O

Hence,

Definition 8. Let a and b two functions in £. The A-convolution product a®bof a and

b is defined by R R
a®b=A"(A*(a) « A*(b))

(or equivalently since A* = (A*)~1)

(@®b)(8) =a(A) xb(A),

and the harmonic product a X b of a and b by

~

amb=LG®D).

15



Remark 6. The A-convolution product and the harmonic product inherit of the alge-
braic properties of the ordinary convolution product ¢.e. bilinearity, commutativity and
associativity. This construction may be summarized in the following diagram

-~

(a,b) —— (@,b) —— (a(A),b(A))

! | |

~

axb—— a®b —— G(A) *b(A)
Theorem 9. Let a and b in €. Then,
D(a x b) = D(a) D(b) (24)

and

D(ab) = D(a) x D(b). (25)
Proof. One recalls (cf. Theorem 3) that
D =LA LT

Hence
D(a ™ b) = LA*L " (a x b) = LA*(@ ® b) = L(A*(@) * A*(D))

and it follows from (5) and (9) that

A~ A~

L(A*(@) « A%(b)) = L(A"(@))L(A"(b)) = D(a) D(b)
which proves (24). Moreover, (24) enables to write
D(D(a) x D(b)) = D*(a) D*(b) = ab (since D = D™1),

and so
D(ab) = D*(D(a) x D(b)) = D(a) x D(b)

which proves (25). O

Corollary 2. Let a and b in £. Then

R o)

D (axb)(n)=>) %D(a)(n) D(b)(n), (26)
n>1 n=1

R o0 \

S (@b)(n) =3 2% (Dla) 1 D)) ().

n>1 n=1

Remark 7. The values of (a x b)(n) may be computed without the recourse to @ and
b. By elementary transformations, it can be shown that

+oo +oo R
(@ b)(n+1) = /0 /0 (e (e~ + €% — e\ "a(t)b(s)dtds .

16



Hence, if the numbers C’ﬁ’l are defined by

(X+Y-XY)"= > Cchxhy!,
0<k<n
0<i<n

then, one has the following explicit formula

(@xb)(n+1)= Y Crla(k+1)b(+1).
0<k<n
0<i<n

The name “harmonic product” is justified by the following harmonic property :

1 1 (¢
(x X a> (n) = - (Z a(k)) .
k=1
This harmonic property results from the equalities
1 o0 +o00 et
- Xa= / e (/ a(t) tdt) du
z 0 w 1—e"
+o0 t e—t
_ / ( / ewdu> a(t)——dt
0 0 l—e

1 +o0 —t
:/O (1= e=)a(t) ——dt

T 1—e

+oo ,—xt __
_AD) Gith A@) = / el eyt
T 0

Theorem 10. Let

1 1
where — denotes (improperly) the function x — — . Then, for all natural numbers m,
x x

(5) =raw=c(ir) (21)
Proof. By (25) we have
1 1 1 1\ Xm+1) 1\ X(m+1) . 1 1
D(W) = D(; e 5) = (D(x)> = <$) since D(g) =
m—+1
Thus, (27) results from (10). .

17



Example 7.

1. l:D( 1):£(A): Az) - ien H(z) = ¢z + 1)+,

x 22 x

1 denoting the logarithmic derivative of I'. In particular, for each integer n > 1

(21 - i) s

T T n n

Theorem 11. for all s € C with R(s) > 1, one has

R R Mk
Fy(s) = Z % and Fy(s) = Z <<i> X ;) (n) fork>1. (28)

n>1 n>1
1
Proof. By (13), (23), (26) and the invariance of — by D, one may write
x

ni; ((i) " ;) (n) —ii’;p <<;> Mk) (n)D <;> (n)

n=1

S ()

n=1

:72 %D (:) (n) = Fu(s).

U]
In particular, by (11) and (27), one deduces from (28) the following identity :
Corollary 3. For each natural number k,
o0 R (2) (k)
A 1 Pu(H,, H?, ..., HF)
F,(1)=0(k+1) = Z n%bnkﬂ — Z n nn , (29)
n=1 " n>1
Example 8.
0 R
An 1
=D = =1,
n=1 n>1
00 R
A H
9(2) = =) ==
@) Z nln? n’
n=1 n>1
0o R R (2)
A 1~ H? 1 ~Hy
93) =) —— == 4 - :
(3) Zn!n3 2Zn+2 n
n=1 n>1 n>1

Remark 8. Comparing (20) (applied with ¢ = k+ 1) with (29) above, one may observe
a kind of duality between F},(1) and Fy(k+1). This results from the fact that D = D=1,

18
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