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Parc Valrose, 06108 Nice cedex 2, France. cassam@unice.fr

Vitaly Rassolov

Department of Chemistry and Biochemistry, University of South Carolina, 631

Sumter Street, Columbia, South Carolina 29208.

Abstract

The concept of p-orthogonality between electronic states, which generalizes com-

mon orthogonality and strong orthogonality, provides a natural hierarchy for group

function methods such as the electronic mean field configuration interaction method.

In this letter, this theoretical concept is applied in numerical calculations for the

first time. The accuracy of the geminal mean field configuration interaction wave

functions of simple molecular systems is studied as the orthogonality constraint be-

tween the geminals relaxes from 1-orthogonality (that is strong orthogonality) to

2-orthogonality, to no orthogonality constraint at all.
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1 Introduction

The concept of p-orthogonality between electronic wave functions has been proposed for

the first time by S. Wilson [1]. One of the authors has rediscovered independently this

concept and has defined it in the more general context of quantum states, either pure or

mixed (i.e. ensemble) states, of systems of identical particles, either fermions or bosons

[2].

This letter presents the application of this concept to the simplest, non trivial, electronic

mean field configuration interaction (EMFCI) method that is the geminal mean field

configuration interaction (GMFCI) method or when iterated, the geminal self consistent

field (GSCF) method [3]. Our goal is to assess on simple atomic and molecular systems

for which full configuration interaction (CI) references are available, how the accuracy

of the GMFCI or GSCF methods is affected by imposing the p-orthogonality constraint

for p ∈ {1, 2}. To the best of our knowledge, it is the first numerical application of

p-orthogonality as such.

At the same time, the present study complements our previous work [4] (part II of this

series of papers) on guess geminals and demonstrates that the strongly orthogonal gemi-

nals with variationally optimized Hilbert subspaces [5] (called “antisymmetrized product

of singlet-type strongly orthogonal geminals”, APSSG, by Rassolov et al. or “restricted

singlet-type strongly orthogonal geminals”, RSSG, in the case of spin restricted calcula-

tions) is an extremely good guess for the EMFCI method.

Throughout the letter, we use the following notation: lower case greek symbols ψi are one-

electron spinorbitals, upper case Ψi are antisymmetric functions of one or more electrons

and are called “electron group functions” or just “group functions”. The antisymmetrized

product of electron group functions Ψ = A[Ψ1(r1, · · · , rn1), · · · ,Ψk(rn−nk+1, · · · , rn)],

where A is the antisymmetrizing operator, (that is the normalized sum of signed permu-

tations permuting the variables rj among the different group functions), ni the number

of electrons in Ψi, and n =
∑
i ni the total number of electrons, is denoted with the
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Grassmann product (∧) as

Ψ = Ψ1 ∧ · · · ∧Ψk. (1)

An introduction to the Grassmann product formalism can be found in Ref. [9,10]. Note

that in the literature, the term “group function” is usually employed for an antisymmet-

rical product function Ψ rather than for the Ψi’s.

The letter is organised in the following way: We first recall the definition of p-orthogonality,

then we briefly introduce the EMFCI and GSCF methods with or without p-orthogonality

imposed between group functions. Next, we illustrate numerically the effect of this con-

straint on a few chosen examples. Finally, we conclude on the prospect of tuning the

p-orthogonality constraint to describe accurately the physics of a molecular system at

the least computational cost within a group function frame.

2 p-orthogonality

An easy way to introduce p-orthogonality between two electronic states consists in con-

sidering the eigenfunctions associated with the non zero eigenvalues of their respective

pth-order reduced density operators. Let us call these functions the “populated, natural,

p-electron functions”, each set spans a vector space that we have termed the “p-internal

space” of the related electronic state. Another way to look at the p-internal space of an

electronic pure state which justifies our terminology is the following characterization [10]:

a function, Φ, belongs to the p-internal space of an n-electron wave function if and only

if there exists an (n − p)-electron function such that its annihilation in the n-electron

wave function (in the second quantization sense) gives Φ. In other words, the p-internal

space of an n-electron wave function is the vector space of all the p-electron functions

obtained by annihilation of an (n− p)-electron function in the n-electron wave function.

For example, the 1-internal space, or simply “internal space” of a wave function Ψ,

denoted by, I1[Ψ], is the space spanned by the occupied, natural spinorbitals. The 2-
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internal space, denoted by, I2[Ψ], is the space spanned by the occupied, natural geminals.

The n-internal space is the one-dimensional vector space spanned by the wave function

Ψ, C · Ψ. The p-internal space of a single configuration function (Slater determinant)

built over a set of n orthogonal spinorbitals, Ψ := ψ1 ∧ . . . ∧ ψn, is the
(
n
p

)
-dimensional

vector space spanned by the p-particle functions, ψi1 ∧ . . .∧ψip , built over p spinorbitals

of Ψ.

Then, two electronic states of, say, n1 and n2 electrons respectively, are said p-orthogonal

with 1 ≤ p ≤ inf(n1, n2), if and only if their p-internal spaces are orthogonal. Let us

consider two pure states represented by wave functions Ψ1 and Ψ2, respectively. We see

immediately that if n1 = n2 = n, n-orthogonality is the usual orthogonality between

wave functions, since In[Ψi] = C ·Ψi, ∀i ∈ {1, 2}, so that

In[Ψ1] ⊥ In[Ψ2]⇐⇒ Ψ1 ⊥ Ψ2 ⇐⇒ 〈Ψ1|Ψ2〉 = 0.

At the other end, 1-orthogonality between Ψ1 and Ψ2 amounts to strong orthogonality

[6–8].

An important property is that p-orthogonality implies q-orthogonality for all q ≥ p. So,

p-orthogonality provides us with a graded orthogonality concept for electronic states. It

discriminates between pairs of wave functions that are all orthogonal in the traditional

sense: Let ψ1, . . . , ψ2n be 2n orthonormal spinorbitals. For p > 0, the Slater determinants

Ψ1 := ψ1∧. . .∧ψn and Ψ2 := ψ1∧. . .∧ψn−p∧ψn+1 . . .∧ψn+p are (n−p+1)-orthogonal but

not (n−p)-orthogonal. Furthermore, the concept is well-defined for multiconfigurational

functions of different numbers of electrons: The pairs Ψ1 := ψ1 ∧ ψ2 ∧ ψ3 + ψ4 ∧ ψ5 ∧ ψ6

and Ψ2 := ψ1 ∧ ψ7 + ψ2 ∧ ψ8 are 2-orthogonal (it is impossible to obtain a function not

orthogonal to Ψ2 by annihilating a spinorbital in Ψ1) but not 1-orthogonal since both

ψ1 and ψ2 belongs to their respective internal spaces.

A remarkable fact that justifies the relevance of p-orthogonality to quantum chemistry,

is that this purely geometrical concept is related in a neat and straightforward manner

to the expression of matrix elements of quantum observables between antisymmetrized

4



products of electron group functions [1,2]. The stronger the p-orthogonality between

the factors of the antisymmetrized products, the simpler the combinatorics involved in

the matrix element expressions, and the lower their computational cost. So, imposing

p-orthogonality constraints to antisymmetrized products of electron group function for

increasing values of p, naturally leads one to consider a corresponding hierarchy of group

function approximation methods.

3 p-orthogonally constrained EMFCI methods

In quantum chemistry, variational methods to solve the electronic Schrödinger equation

are usually classified into two classes: those which use orthogonal orbitals and those which

use non-orthogonal orbitals. In the first class, the most general is arguably the ORMAS

(occupation-restricted-multiple active spaces) method [11]. ORMAS-CI and ORMAS-

SCF encompass the traditional CI methods and multi-configuration self-consistent field

(MC-SCF) methods. In the second class, one finds methods based on valence-bond wave

functions, such as those implemented in the code TURTLE [12], and XMVB [13], or on

more general group function products as implemented in the code VB2000 [14]. A fairly

extensive bibiliography on early works using group function product wave functions has

been given in a previous article of this series [3], a few other relevant references are

[15–22]. More references on non-orthogonal methods can be found in Ref. [23]. Note also

a recently proposed method [24], which implements the idea of finding an optimal wave

function of a fixed length (see Remark 4.10 of Ref. [9]) that is the best sum of a fixed

number of Slater determinants with no orthogonality nor normalization restriction on

their spinorbitals.

An Electronic Mean Field Configuration Interaction (EMFCI) calculation is an n-electron

configuration interaction (CI) calculation, where the set of orthogonal basis functions

considered has a group function product structure of the form: (Ψ0
1 ∧ · · · ∧ Ψk

j ∧ · · · ∧

Ψ0
r)0≤k≤N . It can be regarded as a configuration interaction for the “active” group j in

the mean field of the (r − 1) “spectator” electron group wave functions Ψ0
i for i 6= j.
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An Electronic Self-Consistent Field Configuration Interaction (ESCFCI) calculation for

a fixed set of electron numbers, (ni)1≤i≤r, is defined to be the variational method that

finds the “best” (with respect to the variational principle) n-electron wave functions

of the form given by Eq. (1). The best ground state can be obtained in principle by

successive EMFCI steps, provided that, at a given step where group j is active, each

spectator state Ψ0
i (for i 6= j) is chosen to be the group function corresponding to the

ground state of the last EMFCI step where group i was active.

Instead of trying to achieve self-consistency with respect to the variation of the original

group functions, one can choose to perform an EMFCI step for another set of integers,

(n′i)1≤i≤r′ with r′ < r, corresponding to a coarser partition of the electronic system, that

is a partition into larger electron groups such that each old group is wholly included into

one of the new groups.

In the original form of the EMFCI and ESCFCI methods, no orthogonality constraint is

imposed on the Ψi. In particular, in the simple case where for all i, ni = 2, both anti-

symmetrized product of strongly orthogonal geminals (APSG) (i.e. 1-orthogonal group

functions) and antisymmetrized geminal product (AGP) of extreme type, Ψ1 ∧ · · · ∧Ψ1,

(where group functions are all equal, so not even 2-orthogonal), are considered by the

variational process. In this work, we study this simple case, where all the group functions

are geminals, with different p-orthogonality constraints.

We will consider two cases of p-orthogonality constraints:

- case 1: the active group, say group 1 without loss of generality, is p-orthogonal to every

spectator group functions, Ψ0
i , i > 1.

- case 2: the active group is p-orthogonal to every spectator group functions, and ev-

ery product of spectator group functions, Ψ0
i1
∧ · · · ∧ Ψ0

ik
, ∀k ∈ {1, · · · , r − 1}. Note

that, for geminal product wave functions and 2-orthogonality, it is sufficient to impose

2-orthogonality of the active group to every spectator group functions, Ψ0
i , i > 1, and

every product of pairs of spectator group functions, Ψ0
i1
∧Ψ0

i2
, i1, i2 > 1, see Appendix A.
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In the case p = 1, if the spectator group functions Ψ0
i are themselves 1-orthogonal to

one another, the two cases are equivalent. However, in general, constraint 2 that we call

spectator product p-orthogonality (SPp-O) is a stronger requirement than constraint 1

called spectator function p-orthogonality (SFp-O).

Imposing the p-orthogonality constraint is close in spirit with the partial release of the

antisymmetry constraint in spin-coupled wave functions [25–27]. It is well known that

there is no need to antisymmetrize two group functions that are 1-orthogonal. More

generally, energy expressions with antisymmetry limited to (p− 1) interchanges between

spin-coupled group functions (that is to say, expansions obtained by neglecting inter-

changes of more than (p − 1) pairs of particles) are related to p-orthogonality in the

sense that they are exact for fully antisymmetrized functions built from p-orthogonal

group functions. However, our goal here, is not to optimize a general wave function with

an approximate energy expression, but to optimize a p-orthogonal constrained wave

function with an exact energy expression.

In the following, the effect of SPp-O and SFp-O, with p ∈ {1, 2}, are evaluated for the

GMFCI and GSCF methods on some singlet molecules. We have limited our study to

molecular systems whose size is small enough so as to allow one to perform a full CI

calculation that can serve as a reference.

3.1 p-orthogonally constrained GMFCI

We have used linear chains of equidistant H nuclei to test the SP1-O≡ SF1-O, SP2-O and

SF2-O constraints on the GMFCI method. These systems are of interest in connection

to metallic hydrogen and are often used for benchmarking purposes [28]. The internuclei

distance between adjacent nuclei was set to 1 angström for all the systems, which is

close to the value one usually obtains by optimizing their geometry within the constraint

of equidistant H nuclei. GMFCI calculations were performed for different chain lengths

and basis sets, see Tab. 1. Results were found fairly insensitive to the value of linear
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dependency threshold (see Appendix B) from ld = 10−2 to ld = 10−5, however, they

are less accurate for ld = 10−1 and numerical instabilities may occur for ld < 10−5 (or

ld < 10−4 for the largest systems).

Two types of one-orthogonal geminal product functions were considered. The first one,

(row “step 0/ CHFO”) corresponds to the best GMFCI solution starting from guess,

singlet geminals built as paired spin-α, spin-β canonical Hartree-Fock orbitals. By “best”

we mean that the choice of the active group is the one that gives the lowest ground state

energy. More explicitly, an RHF calculation is first performed, and a wave function of

the form, ΨHF = ψα1 ∧ ψ
β
1 ∧ · · · ∧ ψαr ∧ ψβr , (where the superscript α or β indicates

the spin of the HF spinorbitals), is obtained. Then, the r possible GMFCI calculations

with r − 1 canonical HF spectator geminals are performed and the wave function of

the form Ψstep0/CHFO = ψα1 ∧ ψ
β
1 ∧ · · · ∧ gi ∧ · · · ∧ ψαr ∧ ψβr giving the lowest ground

state energy is selected. The corresponding energy is tabulated in row “step 0/CHFO”

of Tab. 1. Here gi :=
m∑

b1,b2=1
cib1,b2 ψ

α
b1
∧ ψβb2 is the geminal obtained by a CI calculation

in an orthonormal basis set of the linear space spanned by the functions of the forms

ψα1 ∧ψ
β
1 ∧· · ·∧ψαj ∧ψ

β
j ∧· · ·∧ψαr ∧ψβr and ψα1 ∧ψ

β
1 ∧· · ·∧

(
ψαj ∧ ψ

β
k + ψαk ∧ ψ

β
j

)
∧· · ·∧ψαr ∧ψβr .

Note that strong orthogonality is automatically enforced in such a GMFCI because any

geminal for the active group having an internal spectator spinorbital would give an r

geminal product configuration that is zero, since the spectator product function is a

Slater determinant.

The other type of one-orthogonal geminal product function referred to as SP1-O in Tab.

1, is the best possible singlet geminal product function for a given orbital basis set. By

“best” we mean that both the partitioning of the Hilbert space into r orthogonal Hilbert

subspaces, (sometimes called Arai spaces [29]), and the geminal coefficients have been

optimized to minimize the ground state energy. In other words, it is the RSSG solution

thoroughly studied by one of us [5,30].

Both types of one-orthogonal geminal product functions can serve as starting guess for

further SP2-O, SF2-O or unconstrained GMFCI. The comparison of rows “E0
step0/CHFOs”
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and “E0
SP1−O” of Tab. 1 demonstrates clearly the superiority of the RSSGs energies.

However, when no constraint is enforced and GMFCI calculations are iterated until self-

consistency, the same energy should be obtained regardless of the starting guess. The

question is whether the difference E0
step0/CHFOs−E0

SP1−O is caught up in a single GMFCI

step or only after many such steps. The situation is even less clear with orthogonality

constraints, in particular, the dimension of the 2-internal space of an RSSG spectator

product wavefunction is in general greater than its best step 0/CHFO counterpart, so

we could expect SP2-orthogonality to be more stringent for RSSG than for best step

0/CHFO guess at the first GMFCI step. In fact, SP2-O, SF2-O or unconstrained GMFCI

calculations starting with Ψstep0/CHFO not reported here, show that the magnitudes of the

improvements with respect to E0
step0/CHFOs are of the same order as those with respect to

E0
SP1−O reported in rows “E0

SP2−O”, “E0
SF2−O” and “E0

GMFCI” of Tab. 1, which correspond

to SP2-O, SF2-O or unconstrained GMFCI calculations starting with ΨSP1−O. So, the

advantage of the RSSG wave function is preserved after a GMFCI calculation.

The discrepancy of GMFCI with respect to Full CI in the STO-3G basis set grows

linearly with the number of electron pairs, r, according to, ∆E ' 16 ∗ r − 10mH, for

r = 2, 3, 4. In contrast, it seems insensitive to the size of the basis set for H6. In all

calculations, the SF-2-orthogonality constraint was found essentially transparent. For

STO-3G calculations, the configurations it would eliminate are already eliminated by

the removal of quasi-linear dependencies. For larger basis sets, it does serve to eliminate

two CI coefficients from the GMFCI expansion, while the final energy is not affected.

Note for comparison that the GSCF energy converges towards −3.231555 Hartree for

the H6 STO-3G calculation, (with no guarantee that it is the absolute minimum).

The SP-2-orthogonality constraint not only simplifies the matrix element calculation but

also reduces the number of configurations, as can be seen from the “SP2-O gem. nb.” row

of Tab. 1. However, the ground state energies obtained are the same as the unconstrained

calculations to sub-mHartree precision.
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3.2 p-orthogonally constrained GSCF

The effect of orthogonality constraints on the GSCF method is illustrated in Tab. 2.

The reported GSCF energies are upper bounds of the exact ones after a large number of

iterations: since second derivatives are not calculated, it is not possible to ascertain that

the algorithm reaches a minimum, not to mention the absolute minimum. Note also that

SP2-orthogonality is not investigated because it is not preserved in the GSCF algorithm

implemented in this work which just consists in iterating GMFCI calculations: Even if

we start with a function Ψ0
1 ∧ · · · ∧ Ψ0

j ∧ · · · ∧ Ψ0
r such that each Ψ0

j is 2-orthogonal to

every other geminal Ψ0
i , and to every geminal pair product, Ψ0

i ∧ Ψ0
k, ∀i, k 6= j, (see

Appendix A); after a SP2-orthogonality constrained GMFCI step, where without loss of

generality we can assume that the active group is group 1, the resulting wave function,

ΨGMFCI
1 ∧Ψ0

2 ∧ · · · ∧Ψ0
r does not necessarily satisfy the same property. By construction,

ΨGMFCI
1 will be 2-orthogonal to every spectator geminal product, but for instance, Ψ0

2

has no reason be 2-orthogonal to, say, ΨGMFCI
1 ∧Ψ0

3. So, SP2-orthogonality can still be

enforced in successive GMFCI steps and usefully reduce the number of configurations,

but unfortunately, it cannot be taken advantage of to reduce significantly the matrix

element computation effort.

Tab. 2 shows again that RSSG ground state energies are significantly lower than those

obtained from best step 0/CHFO GMFCI calculations for the last three molecules. Al-

though we could expect that after many iterations both guesses would lead to the same

GSCF energy, in practice it only happens for the simplest systems. For larger systems,

we have often observed that when starting from best step 0/CHFO GMFCI calcula-

tions, convergence is stalled before reaching the value obtained from calculations using

a RSSG starting guess. This confirm the superiority of the latter. The SF2-orthogonal

calculations remain remarkably close to the unconstrained result for GSCF, although

not identical as for a single GMFCI step. The GSCF are themselves remarkably close

to the full CI results which tends to prove that the absolute minima have been found

although this cannot be ascertained. The difference between GSCF and Full CI, which
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is due to the neglect in GSCF of the correlated excitations between geminal functions,

gives an idea of the weight of the latter in the wave funcion.

Besides the total energy, we have investigated the electric dipole moment for two systems

of Tab.2, namely LiH and BH, see Tab. 3. The excellent agreement with the full CI values

confirms the validity of our geminal product functions.

4 Conclusion

Standard guess geminals constructed from the HF canonical orbitals and used in previous

publications have been found clearly inferior to RSSG geminals, obtained by optimising

strongly orthogonal Hilbert subspaces for the different electron groups, in ground state

energy calculations. However, the ideas developed in [4] to rotate HF canonical orbitals

in order to improve excited electronic state calculations can be transposed to RSSG

optimized orbitals. Within each optimized Hilbert subspaces, orbitals can be rotated to

minimise the low lying excited states obtained by single excitation from the subspace.

The combination of such a technique with RSSG geminals would provide optimal guess

geminals for both ground and excited states.

The RSSG calculation providing guess geminals can be regarded as a GSCF calculation

with SF1-orthogonality enforced. Unconstrained GSCF calculations are very accurate,

and the SF2-orthogonality constraint is virtually transparent. However the present al-

gorithm that performs GSCF as an iterated GMFCI with no truncation applied to the

geminal basis set converges poorly, arguably because the geminals in a Grassmann prod-

uct function are strongly inter-related and should be optimized simultaneously rather

than one at a time as in the present algorithm. The SF2-orthogonality constraint hardly

remedies the situation. The SP2-orthogonality constraint is much more efficient in this

respect, but has not been studied here because it is lost after the first iteration with the

present algorithm.
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In fact, if one wants to adhere to the electronic mean field CI philosophy, one should aim

at performing only a few GMFCI steps and play with basis set truncation thresholds both

to prevent excited states from loosing their physical relevance and to save CPU time.

Then, even a single GMFCI step improves greatly over the HF calculation. Moreover,

starting from an SF1-orthogonality constrained GSCF (that is RSSG), and performing a

single GMFCI step with or without an SF2-orthogonality constraint, one can obtain an

accurate wave function with released strong orthogonality restriction. Such a calculation

will be affordable even for large systems, if one uses basis set truncation thresholds

to limit the configuration space, (as used in part II of this series), and/or if one uses

the SP2-orthogonality constraint, which simplifies the Hamiltonian and overlap matrix

calculation, and which has been shown to preserve the GMFCI accuracy to a satisfactory

level.

However, we are currently investigating a form of the SP2-orthogonality constraint, that

is invariant under permutation of group functions and passes through successive GM-

FCI steps, which might remedy the GSCF convergence problem. In addition, the same

permutation-invariant SP2-orthogonality constraint passes through recursion steps in

matrix element calculations. This gives us hope that polynomial scaling with system size

in the computational cost of a post strongly-orthogonal ansatz can be achieved.

More generally, we hope that future works will demonstrate that EMFCI calculations

with p-orthogonality constraint schemes, adapted to a hierarchy of electron groups in

a molecule, in a manner reminiscent of [31] but with a partioning based on optimized

Arai spaces rather than orbitals, provide a good compromise between accuracy and

computational cost.
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Appendix A: SP2-O for geminal product functions

Here we prove that, in the case of a GMFCI calculation, it is sufficient to impose 2-

orthogonality of the active group to every spectator group functions and every product

of pairs of spectator group functions, to enforce the SP2-O constraint, that is to say, to

obtain an active group that is 2-orthogonal to every product of spectator group functions,

so, in particular, to the product of all the (r − 1) spectator group functions in the case

of an r electron pair system.

Lemma:

Assume that ∀i, j > 1, 〈Ψi|Ψ1〉 = 0 and Ψ1 is 2-orthogonal to Ψi ∧Ψj, where Ψ1, . . . ,Ψr

are r geminal functions then Ψ1 is 2-orthogonal to Ψk1 ∧ · · · ∧ Ψks , ∀{k1, · · · , ks} ⊆

{2, · · · , r}.

Proof: One has to show that Ψ1 is an external geminal of Ψk1 ∧ · · · ∧Ψks , that is to say,

in the second quantization language that its annihilation in |Ψk1 ∧ · · · ∧Ψks〉 is zero, or

equivalently, in the exterior algebra formalism [9], that its interior product, denoted by

the symbol←↩, is zero: Ψ1 ←↩ Ψk1∧· · ·∧Ψks = 0. For any 2(s−1)-electron wave function,

Φ, let us compute 〈Ψ1 ←↩ Ψk1 ∧ · · · ∧ Ψks|Φ〉. The Hopf algebra formalism allows us to

perform mechanically such a calculation (see part I of this series [3] for notation):

〈Ψ1 ←↩ Ψk1 ∧ · · · ∧Ψks|Φ〉 = 〈Ψk1 ∧ · · · ∧Ψks|Ψ1 ∧ Φ〉
= 〈X [s−1](Ψk1 ⊗ · · · ⊗Ψks)|X (Ψ1 ⊗ Φ)〉
= 〈Y ◦ X [s−1](Ψk1 ⊗ · · · ⊗Ψks)|Ψ1 ⊗ Φ〉
= 〈(X [s−1] ⊗X [s−1]) ◦ T (2,s) ◦ (Y(Ψk1)⊗ · · · ⊗ Y(Ψks))|Ψ1 ⊗ Φ〉

= 〈(X [s−1] ⊗X [s−1]) ◦ T (2,s) ◦

 ∑
i∈{k1,···,ks}

Y0,2(Ψk1)⊗ · · · ⊗ Y2,0(Ψi)⊗ · · · ⊗ Y0,2(Ψks)

+
∑

i<j∈{k1,···,ks}
Y0,2(Ψk1)⊗ · · · ⊗ Y1,1(Ψi)⊗ · · · ⊗ Y1,1(Ψj)⊗ · · · ⊗ Y0,2(Ψks)

 |Ψ1 ⊗ Φ〉.

Introducing the “hat” notation: (Ψk1 ∧ · · · ∧ Ψks)î means that Ψi is taken out of the

product Ψk1 ∧ · · · ∧Ψks , and (Ψk1 ∧ · · · ∧Ψks)î,ĵ := ((Ψk1 ∧ · · · ∧Ψks)î)ĵ, we obtain,

16



〈Ψ1 ←↩ Ψk1 ∧ · · · ∧Ψks|Φ〉 =
∑

i∈{k1,···,ks}
〈Ψi|Ψ1〉〈(Ψk1 ∧ · · · ∧Ψks)î|Φ〉 −∑

i<j∈{k1,···,ks}

∑
I,J∈P2,1

〈Y1,1(Ψi)I ∧ Y1,1(Ψj)J |Ψ1〉〈(Ψk1 ∧ · · · ∧Ψks)î,ĵ ∧ Y1,1(Ψi)Ī ∧ Y1,1(Ψj)J̄ |Φ〉.

(2)

The first hypothesis of the lemma ensures that the first part of the right-hand-side of

Eq.(2) is zero. So, this equation simplifies, and it gives for s = 2 and any geminal Φ,

〈Ψ1 ←↩ Ψi ∧Ψj|Φ〉 =
∑

I,J∈P2,1

〈Y1,1(Ψi)I ∧ Y1,1(Ψj)J |Ψ1〉〈Y1,1(Ψi)Ī ∧ Y1,1(Ψj)J̄ |Φ〉.

(3)

However, this expression is zero according to the second hypothesis of the lemma for any

Φ, so we obtain,

∑
I,J∈P2,1

〈Y1,1(Ψi)I ∧ Y1,1(Ψj)J |Ψ1〉Y1,1(Ψi)Ī ∧ Y1,1(Ψj)J̄ = 0.

(4)

For any i < j ∈ {k1, · · · , ks}, Eq.(4) can be bracketed by 〈(Ψk1 ∧ · · · ∧ Ψks)î,ĵ∧ on the

left and by an arbitrary 2(s − 1)-electron wave function, |Φ〉, on the right, it will still

be zero. It suffices to sum up over all i < j ∈ {k1, · · · , ks} to recover the second part

of the right-hand-side of Eq.(2), therefore, the latter is zero. Since we have seen that

the first part of the right-hand-side of Eq.(2) is also zero for all Φ, we conclude that

the interior product on the left-hand-side is zero. Therefore, Ψ1 is 2-orthogonal to the

geminal product.
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Appendix B: Practical implementation of orthogonality constraints

The construction of the configuration space of a GMFCI step is by default as follows:

First, a singlet geminal basis set for the active group is generated. At the initial stage, it

is a full CI singlet geminal basis set of size m(m+1)
2

, where m is the number of orbitals, for

general guess geminals. However, when singlet-paired, canonical Hartree-Fock orbitals

are used as guess geminals, the geminals containing spectator orbitals are removed. Or,

if some GMFCI steps have already been performed for the active group considered, the

configuration space is spanned by the possibly truncated geminal set obtained in the last

step where that group was active.

Suppose without loss of generality that the active group is group 1 and denote this set

(gj1)j∈{1,···,M}. Then, one builds the M ×M -overlap matrix for the set, (gj1 ∧ Ψ0
2 ∧ · · · ∧

Ψ0
r)j∈{1,···,M}, and the set is filtered and orthonormalized. More precisely, the product

functions whose squared norm is smaller than the linear dependency tolerance, are filtered

out. Next they are Schmidt orthogonalized in turn and their new squared norm is again

checked against the linear dependency tolerance. If it is smaller, the configuration is

filtered out, if it is larger, the configuration is retained and normalized.

SF2-orthogonality

If SF2-orthogonality is imposed, then before the filtering and orthonormalization of the

set (gj1 ∧ Ψ0
2 ∧ · · · ∧ Ψ0

r)j∈{1,···,M} as described above, the set (gj1)j∈{1,···,M} is Schmidt

orthogonalized with respect to the normalized set of spectator geminals, that is to say

the spectator geminals are projected out orthogonally from the gj1’s.
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SP2-orthogonality

If SP2-orthogonality is imposed, then before the filtering and orthonormalization of the

set (gj1 ∧ Ψ0
2 ∧ · · · ∧ Ψ0

r)j∈{1,···,M} as described above, the set (gj1)j∈{1,···,M} is Schmidt

orthogonalized with respect to the normalized set of spectator geminals plus natural

geminals of each product of pairs of spectator geminals whose population (eigenvalue of

the second order reduced density matrix) is above a given threshold (called the “internal

geminal threshold”). This is necessary and sufficient according to the lemma of Appendix

A to ensure SP2-orthogonality with respect to a geminal product spectator wave function.

Remark 1: Penotti’s techniques [23] to impose some orthogonality constraints to sets of

orbitals in variational calculations, could be profitably transposed to geminal sets, if in

the future a quadratically-convergent algorithm involving energy derivatives is imple-

mented to perform GSCF calculations.

Remark 2: Orthogonality constraints are imposed by restricting the configuration space

of the CI calculation. Therefore all the excited states of the active group satisfy the same

orthogonality constraints as the optimized ground state.

Remark 3: Note that the lemna of Appendix A is valid irrespective of the spin of the

geminals. When dealing with spin-adapted geminals, further simplifications occur. In

particular, the orthogonalization with respect to the 2-internal space of a spectator

product function, only requires the computation of a basis set singlet 2-internal gem-

inals when the active group is a singlet. This is because the active geminals are already

orthogonal by spin symmetry to the triplet 2-internal geminals. Similarly, if the active

group is a triplet, only triplet 2-internal geminals need to be extracted from the spec-

tator product. Systems whose total spin is a doublet could be dealt with by adding an

extra electron and constraining the active geminal space of the group made of this elec-

tron and its finite distance “pseudo companion” to be spanned by functions of the form

gj1 = ψαj ∧ ψβ∞ + ψα∞ ∧ ψ
β
j , where ψα∞, ψβ∞ are fictitious α− and β−spinorbitals, treated

as orthonormal to the other spinorbitals of the basis set (ψαj , ψ
β
j )j, and such that the
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matrix elements of the Hamiltonian involving any of them are set to zero. This procedure

would have the advantages that nothing need to be changed in the implementation of the

orthogonality constraints described above, and that when the pseudo pair is spectator,

it does not break the spin symmetry of the active group functions.
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H6 STO-3G H6 6-31G H6 VTZ H8 STO-3G H10 STO-3G

ld 10−5 10−5 10−5 10−4 10−4

E0
RHF -3.135532 -3.227128 -3.233347 -4.174370 -5.214069

E0
step0/CHFOs -3.159021 -3.246555 -3.253214 -4.195118 -5.232660

E0
SP1−O -3.205983 -3.294840 -3.302411 -4.262012 -5.318586

E0
SP2−O -3.214018 -3.301916 -3.310028 -4.268768 -5.325339

SP2-O gem. nb. 13 60 144 18 23

E0
SF2−O -3.214108 -3.302039 -3.310146 -4.269070 -5.325612

SF2-O gem. nb. 17 76 169 30 47

E0
GMFCI -3.214108 -3.302039 -3.310146 -4.269070 -5.325612

GMFCI gem. nb. 17 78 171 30 47

E0
FullCI -3.236066 -3.326551 -3.335807 -4.307572 -5.379955

Table 1

GMFCI ground state energies (E0) in Hartree of H-chains with different orthogonality con-

straints. Adjacent H nuclei are separated by 1 angström. In all calculations, the active group

was the one for which the energy lowering was the largest with respect to the guess geminal

product function. The threshold on geminal population to decide whether a given natural gem-

inal was considered internal or not, was 10−8. ld : linear dependency threshold; gem. nb. stands

for geminal number, i. e. the size of the CI performed; see main text for the other acronyms

and notation.
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LiH Be Li2 BeH2 BH Be2

E0
RHF -7.862002 -14.351880 -14.638725 -15.559405 -24.752780 -28.698990

E0
step0/CHFOs -7.882164 -14.403329 -14.666525 -15.570531 -24.778657 -28.738672

E0
SF1−O -7.882203 -14.403630 -14.666584 -15.588630 -24.807908 -28.781789

E0
SF2−O -7.882368 -14.403654 -14.667090 -15.594703 -24.809920 -28.803080

E0
GSCF -7.882372 -14.403655 -14.667114 -15.594715 -24.809938 -28.803212

E0
FullCI -7.882392 -14.403655 -14.667340 -15.594861 -24.809945 -28.804345

Table 2

GSCF ground state energies (E0) in Hartree at ”experimental” geometry (rLi−H = 1.5957,

rLi−Li = 2.673, rBe−H = 1.340, rB−H = 1.2324, rBe−Be = 2.460 in angström) for the STO-3G

basis set. E0
SF1−O is the equivalent to E0

SP1−O of Tab. 1. GSCF calculations with (E0
SF2−O)

and without (E0
GSCF ) SF2-O constraint were stopped when a GMFCI step did not lower the

energy by more than a given threshold, chosen to be 10−9 Hartree (or 10−8 for Be and Be2),

for all possible active groups. A truncation threshold for quasi-linear dependency of geminal

products of 10−6 has been used, as well as RSSG initial guess, except for LiH where canonical

HF geminals were used. See main text for acronyms and notation

22



LiH BH

Dz
RHF -4.8578 0.9569

Dz
step0/CHFOs -4.6214 0.6683

Dz
SF1−O -4.6269 0.6861

Dz
SF2−O -4.6189 0.6142

Dz
GSCF -4.6197 0.6138

Dz
FullCI -4.6201 0.6138

Table 3

GSCF ground state electric dipole moment along the molecule axis (Dz) in Debye for the wave

functions corresponding to the energies of Tab. (2).
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