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We study some spring mass models for a structure having some unilateral springs of small rigidity ε. We obtain and justify mathematically an asymptotic expansion with the method of strained coordinates with new tools to handle such defects, including a non negligible cumulative effect over a long time: T ε ∼ 1/ε as usual; or, for a new critical case, we can only expect:

We check numerically these results and present a purely numerical algorithm to compute "Non linear Normal Modes" (NNM); this algorithm provides results close to the asymptotic expansions but enables us to compute NNM even when ε becomes larger.

Introduction

For spring mass models, the presence of a small piecewise linear rigidity can model a small defect which implies unilateral reactions on the structure. So, the nonlinear and piecewise linear function u + = max(0, u) plays a key role in this paper. For nondestructive testing we study a non-smooth nonlinear effect for large time by asymptotic expansion of the vibrations. New features and comparisons with classical cases of smooth perturbations are given, for instance, with the classical Duffing equation: ü + u + εu 3 = 0 and the non classical case: ü + u + εu + = 0. Indeed, piecewise linearity is non-smooth: nonlinear and Lipschitz but not differentiable. We give some new results to validate such asymptotic expansions. Furthermore, these tools are also valid for a more general non linearity. A nonlinear crack approach for elastic waves can be found in [START_REF] Junca | Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave[END_REF]. Another approach in the framework of non-smooth analysis can be found in [START_REF] Attouch | The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations[END_REF][START_REF] Cohen | Long-time analysis of non linearly perturbed wave equations via modulated Fourier expansions[END_REF][START_REF] Paoli | Resonance in impact problems[END_REF]. For short time, a linearization procedure is enough to compute a good approximation. But for large time, nonlinear cumulative effects drastically alter the nature of the solution. We will consider the classical method of strained coordinates to compute asymptotic expansions. The idea goes further back to Stokes, who in 1847 calculated periodic solutions for a weakly nonlinear wave propagation problem, see [START_REF] Kevorkian | Perturbation methods in applied mathematics[END_REF][START_REF] Kevorkian | Multiple Scale and Singular Perturbations Problems[END_REF][START_REF] Miller | Applied Asymptotic Analysis[END_REF][START_REF] Nayfeh | Introduction to perturbation techniques[END_REF] for more details and references therein. Subsequent authors have generally referred to this as the Poincaré method or the Lindstedt method. It is a simple and efficient method which gives us approximate nonlinear normal modes with 1 or more degrees of freedom. Lindstedt-Poincaré method has been already used in [START_REF] Vestroni | A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system[END_REF] to study NNM of a piecewise linear system with two degrees of freedom. Here the non linearity is somewhat more general. We consider N dimensional systems. Moreover we prove rigorously the validity of the expansion. On the other hand [START_REF] Vestroni | A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system[END_REF] addresses other very interesting open problems such as: bifurcation of solutions, higher order expansions, stability of solutions. In section 2 we present the method on an explicit case with an internal Lipschitz force. We focus on an equation with one degree of freedom with expansions valid for time of order ε -1 or, more surprisingly, ε -1/2 for a degenerate contact. Section 3 contains a tool to expand (u + εv) + and some accurate estimate for the remainder. This is a new key point to validate the method of strained coordinates with unilateral contact. In Section 4, we extend previous results to systems with N degrees of freedom, first, with the same accuracy for approximate nonlinear normal modes, then, with less accuracy with all modes. We check numerically these results and present a purely numerical algorithm to compute "Non linear normal Modes" (NNM) in the sense of Rosenberg [START_REF] Rosenberg | On non linear vibrations of systems with many degrees of freedom[END_REF]; see [START_REF] Arquier | Two methods for the computation of nonlinear modes of vibrating systems at large amplitude[END_REF] for two methods for the computation of NNM; see [START_REF] Jiang | Large-amplitude non-linear normal mode of piecewise linear systems[END_REF] for a computation of non linear normal mode with unilateral contact and [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamics[END_REF] for a synthesis on non linear normal modes; this algorithm provides results close to the asymptotic expansions but enables to compute NNM even when ε becomes larger. In Section 5, we briefly explain why we only perform expansions with even periodic functions to compute the nonlinear frequency shift. Section 6 is an appendix containing some technical proofs and results.

2 One degree of freedom

Explicit angular frequency

We consider a one degree of freedom spring-mass system (see figure 1): one spring is classical linear and attached to the mass and to a rigid wall, the second is still linear attached to a rigid wall but has a unilateral contact with the mass; this is to be considered as a damaged spring. The force acting on the mass is k 1 u + k 2 u + where u is the displacement of the mass m, k 1 , the rigidity of the undamaged spring and k 2 , the rigidity of the damaged unilateral spring. We notice that the term u + is Lipschitz but not differentiable with respect to u. Assuming that k 2 = εk 1 , ε = εω 2 0 with ω 2 0 = k 1 /m, we can consider the equation: ü + ω 2 0 u + εu + = 0, with u + = max(0, u).

(

) 1 
The associated energy is E = ( u2 + ω 2 0 u 2 + ε(u + ) 2 )/2. Therefore, the level sets of E(u, u)

Figure 1: Two springs, on the right it has only a unilateral contact.

will be made of two half ellipses. Indeed, for u < 0 the level set is an half ellipse, and for u > 0 is another half ellipse. Any solution u(t) is confined to a closed level curve of E(u, u) and is necessarily a periodic function of t.

More precisely, a non trivial solution (E > 0) is on the half ellipse: u2 + ω 2 0 u = 2E, in the phase plane during the time T C = π/ω 0 , and on the half ellipse u2 + (ω 2 0 + ε)u = 2E during the time T E = π/ ω 2 0 + ε. Then the period is exactly

P (ε) = (1 + 1 + ε/ω 2 0 -1/2 )π/ω 0 ,
and the exact angular frequency is:

ω(ε) = 2ω 0 1 + 1 + ε/ω 2 0 -1/2 -1 = ω 0 + ε (4ω 0 ) - ε 2 (8ω 3 0 ) + O(ε 3 ). ( 2 
)
Let us compare with the angular frequency ω D (ε) for Duffing equation where the nonlinear term is u 3 instead of u + . ω D (ε) depends on the amplitude a 0 of the solution (see for instance [START_REF] Kevorkian | Perturbation methods in applied mathematics[END_REF][START_REF] Kevorkian | Multiple Scale and Singular Perturbations Problems[END_REF][START_REF] Miller | Applied Asymptotic Analysis[END_REF][START_REF] Nayfeh | Introduction to perturbation techniques[END_REF]):

ω D (ε) = ω 0 + 3 8ω 2 0 a 2 0 ε - 15 256ω 4 0 a 4 0 ε 2 + O(ε 3 ).

The method of strained coordinates

Now, we compute, with the method of strained coordinates, ω ε , an approximation of the exact angular frequency ω(ε) which is smooth with respect to ε by exact formula [START_REF] Attouch | The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations[END_REF]:

ω(ε) = ω ε + O(ε 3
). We expound this case completely to use the same method of strained coordinates later when we will not have such an explicit formula. Let us define the new time s = ω ε t and rewrite equation ( 1) with v ε (s) = u ε (t)

ω 2 ε v ′′ ε (s) + ω 2 0 v ε (s) + ε(v ε (s)) + = 0, with s = ω ε t, u ε (t) = v ε (s), (3) 
To simplify, u ε is subjected to the following initial conditions: u ε (0) = a 0 > 0, uε (0) = 0, i.e. v ε (0) = a 0 and v ′ ε (0) = 0. Similar computations are valid for negative a 0 , see Proposition 2.1 below. With more general data, i.e. when uε (0) = 0, computations are more complicate and give the same approximate angular frequency ω ε , see section 5.

In the new time s, we use the following ansatz

ω ε = ω 0 + εω 1 + ε 2 ω 2 , v ε (s) = v 0 (s) + εv 1 (s) + ε 2 r ε (s). (4) 
ω 1 and ω 2 are unknown. Since

ω 2 ε = α 0 + εα 1 + ε 2 α 2 + O(ε 3 ), α 0 = ω 2 0 , α 1 = 2ω 0 ω 1 , α 2 = ω 2
1 + 2ω 0 ω 2 , we have to find α 1 and α 2 . We will also use the following expansion, (u + εv) + = u + + εH(u)v + εχ ε (u, v), justified later, where H(.) is the Heaviside function, equal to 1 if u > 0 and else 0. Since H(.) is not differentiable at u = 0, the remainder εχ ε (u, v) is not the classical Taylor's remainder. This lack of smoothness is a problem to validate mathematically the Lindstedt-Poincaré method.

The remainder problem is studied in section 3 below. Now, replacing ansatz (4) in (3) we obtain differential equations and initial data for

v 0 , v 1 , r ε with L(v) = -α 0 (v ′′ + v): L(v 0 ) = -α 0 (v ′′ + v) = 0, v 0 (0) = a 0 , v ′ 0 (0) = 0, (5) L(v 1 ) = (v 0 ) + + α 1 v ′′ 0 , v 1 (0) = 0, v ′ 1 (0) = 0, (6) 
L(r ε ) = H(v 0 )v 1 + α 2 v ′′ 0 + α 1 v ′′ 1 + R ε (s), r ε (0) = 0, r ′ ε (0) = 0. (7) 
Now we compute, α 1 , v 1 and then α 2 . We have v 0 (s) = a 0 cos(s). A key point in the method of strained coordinates is to keep bounded v 1 and r ε for large time by a choice of α 1 for u 1 and α 2 for r ε . For this purpose, we avoid resonant or secular term in the right-hand-side of equations ( 6), [START_REF] Ekeland | Convexity methods in Hamiltonian mechanics[END_REF]. Let us first focus on α 1 . Notice that, v 0 (s) = a 0 cos(s) and a 0 > 0, so

(v 0 ) + = a 0 cos s 2 + | cos s| 2 .
Note that | cos(s)| has no term with frequencies ±1, since there are only even frequencies. Thus (

(v 0 ) + -α 1 v 0 ) = a 0 cos(s)(1/2 -α 1 ) + a 0 | cos(s)|/2 has no secular term if and only if α 1 = 1/2, so ω 1 = 1/(4ω 0 ). Now, v 1 satisfies: L(v 1 ) = a 0 | cos s|/2.
To remove secular term in the equation [START_REF] Ekeland | Convexity methods in Hamiltonian mechanics[END_REF] we have to obtain the Fourier expansion for H(v 0 ) and v 1 . Some computations yield:

| cos(s)| = 2 π - 4 π +∞ k=1 (-1) k 4k 2 -1 cos(2ks), (8) 
v 1 (s) = -a 0 πω 2 0 1 -cos(s) -2 +∞ k=1 (-1) k (4k 2 -1) 2 (cos(2ks) -cos(s)) , (9) 
H(cos(s)) = 1 2 + 2 π +∞ k=1
(-1) j 2j + 1 cos((2j + 1)s).

To remove secular term of order one in [START_REF] Ekeland | Convexity methods in Hamiltonian mechanics[END_REF], it suffices to take α 2 such that:

0 = 2π 0 [H(v 0 (s))v 1 (s) + α 2 v ′′ 0 (s) + α 1 v ′′ 1 (s)] v 0 (s)ds ( 10 
)
For Duffing equation, see [START_REF] Kevorkian | Perturbation methods in applied mathematics[END_REF][START_REF] Kevorkian | Multiple Scale and Singular Perturbations Problems[END_REF][START_REF] Miller | Applied Asymptotic Analysis[END_REF], the source term involves only few complex exponentials and the calculus of α 2 is explicit. For general smooth source term, Fourier coefficients decay very fast. Here, we have an infinite set of frequencies for v 1 and H(v 0 ), with only an algebraic rate of decay for Fourier coefficients. So, numerical computations are needed to compute a large number of Fourier coefficients. For our first simple example, we can compute explicitly α 2 . After lengthy and tedious computations involving numerical series, we have from ( 10) and ( 8), ( 9), to evaluate a numerical series which yields α 2 = -3(4ω 0 ) -2 thus ω 2 = -(2ω 0 ) -3 as we have already obtained in [START_REF] Attouch | The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations[END_REF]. In more general cases α 2 can be computed numerically but not exactly. The mathematical result is stated in Proposition 2.1 below. The technical proof of the Proposition 2.1 is postponed to the appendix.

We obtain in figure 2 first modes of the Fourier spectra for v 0 (ω ε t) + εv 1 (ω ε t) when a 0 = 1. 

2: v 1 , log 10 | u ε | max | u ε | Proposition 2.
1 Let u ε be the solution of [START_REF] Arquier | Two methods for the computation of nonlinear modes of vibrating systems at large amplitude[END_REF] such that u ε (0) = a 0 > 0 and uε (0) = 0, then there exists γ > 0, such that, for all t < T ε = γε -1 , we have the following expansion with ω ε = ω 0 + ε 4ω0 -ε 2 (2ω0) 3 and v 1 (.) is given by (9):

u ε (t) = a 0 cos(ω ε t) + εv 1 (ω ε t) + O(ε 2 ) in C 2 ([0, T ε ], R).
Examples from Proposition 2.1 have angular frequency independent of the amplitude. Equation (1) is homogeneous . Indeed, it is a special case, as we can see in the non homogeneous following cases. In these cases, we assume that the spring is either not in contact with the mass at rest (b > 0) or with a prestress at rest (b < 0).

Proposition 2.2 (Nonlinear dependence of angular frequency )

Let b be a real number and let u ε be the solution of:

ü + ω 2 0 u + εa(u -b) + = 0, u ε (0) = a 0 + εa 1 , uε (0) = 0. ( 11 
)
If |a 0 | > |b| then there exists γ > 0, such that, we have the following expansion in C 2 ([0, T ε ], R) where T ε = γε -1 , ω ε = ω 0 + εω 1 + ε 2 ω 2 and c k , β are defined by [START_REF] Junca | Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave[END_REF], ( 13) with κ = b/|a 0 | :

u ε (t) = a 0 cos(ω ε t) + εv 1 (ω ε t) + O(ε 2 ) with v 1 (s) = +∞ k=0 d k cos(ks), d k = -a|a 0 | ω 2 0 (1 -k 2 ) c k (a 0 /|a 0 |) k , for k ≥ 2, d 0 = - a|a 0 | πω 2 0 (sin(β) -κβ) , d 1 = a 1 - k =1 d k , ω 1 = a 2πω 0 sin(2β) 2 + β -2κ sin(β) , ω 2 = ω 1 d 1 a 0 - a ω 0 πa 0 π 0 H(a 0 cos(s) -b)v 1 (s) cos(s)ds.
Notice that if |a 0 | < |b|, there is no interaction with the weak unilateral spring. Thus the linearized solution is the exact solution. Proof : There are two similar cases, a 0 positive or negative. First case: assume a 0 > 0. With the previous notations, the method of strained coordinates yields the following equations:

v ′′ 0 + v 0 = 0, v 0 (0) = a 0 , v0 (0) = 0 so v 0 (s) = a 0 cos(s), -α 0 (v ′′ 1 + v 1 ) = a(v 0 -b) + -α 1 v 0 = aa 0 (cos(s) -b/a 0 ) + -α 1 a 0 cos(s), -α 0 (r ′′ ε + r ε ) = aH(v 0 -b)v 1 -α 2 v 0 -α 1 v 1 + R ε .
Since |κ| = |b/a 0 | < 1, the Fourier coefficient of (cos(s)κ) + = +∞ k=0 c k cos(ks) are:

c k = c k [κ] = 1 π sin((k + 1)β) k + 1 + sin((k -1)β) k -1 - 2κ sin(kβ) k , k ≥ 2, (12) 
β = β[κ] = arccos (κ) ∈ [0, π], (13) 
c 0 = c 0 [κ] = sin(β) -κβ π , c 1 = c 1 [κ] = 1 π sin(2β) 2 + β -2κ sin(β) .
The non secular condition

π 0 (a(v 0 -b) + -α 1 v 0 ) cos(s)ds = 0, yields α 1 = a × a 0 × c 1 . Now,
we can compute ω 1 = α 1 /(2ω 0 ) and the coefficient of the cosinus expansion of v 1 are

d k = - aa 0 α 0 c k 1 -k 2 for k = 1. The coefficient d 1 is then obtained with the initial data v 1 (0) = a 1 , v1 (0) = 0. α 2 , is obtained with the non secular condition for r ε : 0 = 1 π π 0 (aH(v 0 -b)v 1 - α 2 v 0 -α 1 v 1 ) cos(s)
ds. This condition is rewritten as follow

α 2 = 2ω 0 ω 1 d 1 a 0 - 2a πa 0 π 0 H(a 0 cos(s) -b)v 1 (s) cos(s)ds, which gives ω 2 since ω 2 = α2-ω 2 1 2ω0 .
Second case: when a 0 = -|a 0 | < 0, by a similar way, we obtain a similar expansion, except that (v 0 (s)b) + = |a 0 |(cos(s)κ) + . The Fourier expansion of (-cos(s)κ) + = k ck cos(ks) is simply given by ck = (-1) k c k sincecos(s) = cos(s + π).

When |a 0 | = |b|, we have another asymptotic expansion only valid for shorter time when the unilateral spring slightly interacts with the mass. It is a new feature. Proposition 2.3 (Grazing unilateral contact, shorter time validity) Let b be a real number, b = 0, and consider, the solution u ε of problem [START_REF] Junca | High oscillations and smoothing effect for nonlinear scalar conservation laws[END_REF].

If |a 0 | = |b| and |a 0 + εa 1 | > |b| then we have u ε (t) = (a 0 + εa 1 ) cos(ω 0 t) + O(ε 2 ), for t ≤ T ε = O 1 √ ε .
Notice that if |a 0 + εa 1 | ≤ |b| then u ε (t) = (a 0 + εa 1 ) cos(ω 0 t) for all time.

The method of strained coordinates gives us the linear approximation for u ε (t), with s = t, i.e.

ω ε = 1. If |u ε (0)| < |b|, the exact solution is the solution of the linear problem ü+ω 2 0 u = 0. Otherwise, if |u ε (0)| > |b|, since, |b| is the maximum of v 0 (s) = a 0 cos(s), a new phenomenon appears, during each period, |u ε (t)| > |b| on interval of time of order √ ε instead of ε. Then T ε is smaller than in Proposition 2.1.
To explain this phenomenon, we give precise estimates of the remainder when we expand (v 0 + εv 1 + ε 2 r ε ) + in the next section, see Lemmas 3.1 and 3.2 below.

Expansion of (u + εv) +

We give some useful lemmas to perform asymptotic expansions and to estimate precisely the remainder for the piecewise linear map u → u + = max(0, u). Lemma 3.1 [Asymptotic expansion for (u + εv) + ] Let be T > 0, u, v two real valued functions defined on I = [0, T ],and H be the Heaviside step function then

(u + εv) + = (u) + + εH(u)v + εχ ε (u, v), (14) 
where χ ε (u, v) is a non negative piecewise linear function and 1-Lipschitz with respect to v.

Let be M > 0, J ε = {t ∈ I, |u(t)| ≤ εM }, µ ε (T ) the measure of the set J ε . If |v(t)| ≤ M for any t ∈ I then |χ ε (u, v)| ≤ |v| ≤ M, T 0 |χ ε (u(t), v(t))| dt ≤ M µ ε (T ). ( 15 
)
The point in inequality [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamics[END_REF] is the remainder εχ ε is only of order ε in L ∞ but of order εµ ε in L 1 . In general, µ ε is not better than a constant, take for instance u ≡ 0. Fortunately, it is proved below that µ ε is often of order ε, and for some critical cases of order √ ε. Proof : Equality ( 14) defines χ ε and can be rewritten as follow:

χ ε (u, v) = (u + εv) + -u + -εH(u)v ε . (16) 
So, χ ε is non negative since u → u + is a convex function. We also easily see that the map (u, v) → χ ε (u, v) is piecewise linear, continuous except on the line u = 0 where χ ε has a jump -v. This jump comes from the Heaviside step function. An explicit computations gives us the simple and useful formula:

0 ≤ εχ ε (u, v) = |u + εv|H(|εv| -|u + εv|). We then have immediately 0 ≤ χ ε (u, v) ≤ |v|. Let u be fixed, then v → χ ε (u, v
) is one Lipschitz with respect to v. Furthermore, the support of χ ε is included in J ε , which concludes the proof. Now we investigate the size of µ ε (T ), see [START_REF] Berthelin | Averaging Lemmas with a force term in the transport equation[END_REF][START_REF] Junca | High oscillations and smoothing effect for nonlinear scalar conservation laws[END_REF] for similar results about µ ε (T ) and other applications. With notations from Lemma 3.1 we have. More generally, if u has also double roots then

µ ε (T ) ≤ C √ ε × T.
The measure of such set J ε implies many applications in averaging lemmas, for a characterization of µ ε in a multidimensional framework see [START_REF] Berthelin | Averaging Lemmas with a force term in the transport equation[END_REF][START_REF] Junca | High oscillations and smoothing effect for nonlinear scalar conservation laws[END_REF].

Notice that any non zero solution u(t) of any linear homogeneous second order ordinary differential equation has always simple zeros, thus for any constant c the map t → u(t)c has at most double roots.

Proof : First assume u only has simple roots on a period [0, P ], and let Z = {t 0 ∈ [0, P ], u(t 0 ) = 0}. The set Z is discrete since u has only simple roots which implies that roots of u are isolated. Thus Z is a finite subset of [0, P ]:

Z = {t 1 , t 2 , • • • , t N }. We can choose an open neighborhood V j of each t j such that u is a diffeomorphism on V j with derivative | u| > | u(t j )|/2. On the compact set K = [0, P ] -∪V j , u never vanishes, then min t∈K |u(t)| = ε 0 > 0. Thus, we have for all εM < ε 0 , the length of J ε in V j is |V j ∩J ε | ≤ 4εM | u(t j )| .
As µ ε is additive (µ ε (P + t) = µ ε (P ) + µ ε (t)), its growth is linear. Thus, for the case with simple roots, we get µ ε (T ) = O(εT ).

For the general case with double roots, on each small neighborhood of t j : V j , we have with a Taylor expansion,

|u(t j + s)| ≥ d j |s| l , with 1 ≤ l ≤ 2, d j > 0, so, |V j ∩ J ε | ≤ 2(εM/d j ) 1/l , then µ ε (P ) = O( √ ε)
,which is enough to conclude the proof.

Several degrees of freedom

Now, we investigate the case with N masses. We use, the method of strained coordinates in three cases. We present the formal computations for each expansion. The mathematical proofs are postponed in the Appendix. In subsection 4.1, the initial condition is near an eigenvector such that the approximate solution stays periodic. We give such initial condition near an eigenvector in subsection 4.2 to get an approximate nonlinear normal mode up to the order ε 2 . Finally, in subsection 4.4, all modes are excited. An extension of the method of strained coordinates is still possible but only at the first order with less accuracy.

The system studied is the following:

M Ü + K Ũ + ε( Ã Ũ -B) + = 0, where, for each component, [( ÃU -B) + ] k =   N j=1 Ãkj u j -b k   +
, M is a N ×N mass matrix, K is the stiffness matrix they are both symmetric definite positive. Ã and B are matrices which involve the rigidity of unilateral springs and their position with respect to the masses. For such a system, endowed with a natural convex energy for the linearized part, we can control the ε-Lipschitz nonlinear term for ε small enough up to large time. So for ε << 1 the solutions remain bounded for time of the order ε -1 . We introduce the matrix Φ of generalized eigenvectors: KΦ = M ΦΛ 2 with Λ positive diagonal matrix of eigenvalues, Φ T M Φ = Id, and set Ũ = ΦU , A = ÃΦ, the system may be written:

Ü + Λ 2 U = -εΦ T (AU -B) + . (17) 
4.1 Initial condition near an eigenvector,

For the system (17), we take an initial condition near an eigenmode of the linearized system denoted for instance by index 1 .

u ε 1 (0) = a 0 + εa 1 , uε 1 (0) = 0, u ε k (0) = 0 + εa k , uε k (0) = 0, f or k = 1. ( 18 
)
We impose a 2 , • • • , a N later to have a periodic approximation, but a 1 is a free constant as a 0 . It is a key point to apply the method of strained coordinates. We use the same time s = ω ε t for each component and the following notations.

ω ε = ω 0 + εω 1 + ε 2 ω 2 , ω 0 = λ 1 , (ω ε ) 2 = α 0 + εα 1 + ε 2 α 2 + O(ε 3 ), α 0 = ω 2 0 = λ 2 1 , α 1 = 2ω 0 ω 1 , α 2 = ω 2 1 + 2ω 0 ω 2 , u ε j (t) = v ε j (s) = v 0 j (s) + εv 1 j (s) + ε 2 r ε j (s), j = 1, • • • , N.
Replacing, this ansatz in the System [START_REF] Kevorkian | Multiple Scale and Singular Perturbations Problems[END_REF] we have in variable s,

(ω ε ) 2 (v ε k ) ′′ + λ 2 k v ε k = -ε N l=1 Φ lk   N j=1 A lj v ε j (s) -b j   + ,
and then performing the expansion for all k ∈ {1, • • • , N },

L k v 0 k = α 0 (v 0 k ) ′′ + λ 2 k v 0 k = 0, -L k v 1 k = N l=1 Φ lk   N j=1 A lj v 0 j -b l   + + α 1 (v 0 k ) ′′ , -L k r ε k = N l=1 Φ lk H   N j=1 A lj v 0 j -b l     N j=1 A lj v 1 j   + α 2 (v 0 k ) ′′ + α 1 (v 1 k ) ′′ + R ε k .
First we have v 0 1 (s) = a 0 cos(s). Equations for v 0 k , for all k = 1, with zero initial data give us v 0 k = 0. In equation for v 1 1 , we remove the secular term in the right hand side,

-α 0 ((v 1 1 ) ′′ + v 1 1 ) = N l=1 Φ l1 A l1 v 0 1 -b j + + α 1 (v 0 1 ) ′′ = r.h.s. v 1 1 (0) = a 1 , (v 1 1 ) ′ (0) = 0.
The orthogonality of the r.h.s with cos(s) defines α 1 with [START_REF] Paoli | Resonance in impact problems[END_REF]. For instance, if b 1 = 0 and

A 11 > 0, we have as in Proposition 2.2, 2α 1 = l Φ l1 A l1 and ω 1 = α 1 2λ 1 . Now, α 1 is fixed, so v 1 1 is a well defined even 2π periodic function. Then, for k = 1, v 1
k is the unique 2π periodic solution of the simplified equation,

-L k v 1 k = N l=1 Φ lk A l1 v 0 1 -b l + . ( 19 
)
Such a function exists and is unique if

λ k / ∈ λ 1 Z. Furthermore v 1
k is an even function as the right hand side of equation [START_REF] Nayfeh | Introduction to perturbation techniques[END_REF]. Then a k is given by v 1 k (0) and (v 1 k ) ′ (0) = 0 for all k = 1. The term r ε 1 , with null initial data, has a simplified equation since v 0 k ≡ 0 for all k = 1,

-L 1 r ε 1 = N l=1 Φ l1 H A l1 v 0 1 -b l   N j=1 A lj v 1 j   + α 2 (v 0 1 ) ′′ + α 1 (v 1 1 ) ′′ + R ε 1 .
Now we can compute numerically α 2 to avoid secular term in the right hand side, R ε 1 excepted, with the following condition,

0 = π 0 N l=1 Φ l1 H A l1 v 0 1 -b l N l=1 A l1 v 1 l + α 2 (v 0 1 ) ′′ + α 1 (v 1 1 ) ′′ • cos(s)ds.
Rewriting this condition, we obtain an equation for α 2 in Theorem 4.1 below.

For each k = 1, λ k / ∈ λ 1 Z, so r ε k stays bounded for large time. Indeed there is no resonance of the order one at the first order in equation satisfied by r ε k . This is the technical part of the proof to validate rigorously and to find the time of validity of such asymptotic expansion. The complete proof to bound (r ε 1 , • • • , r ε N ) for large time is to be found in the Appendix, subsection 6.2. Now we state our result with previous notations.

Theorem 4.1 The Lindstedt-Poincaré expansion is valid on (0, T ε ), with T ε → +∞ when ε → 0 under assumption {λ 2 , • • • , λ N } ∩ λ 1 Z = ∅: u ε 1 (t) = v 0 1 (ω ε t) + εv 1 1 (ω ε t) + O(ε 2 ), u ε k (t) = 0 + εv 1 k (ω ε t) + O(ε 2 ), k = 1,
where v 0 1 (.), α 1 , ω 1 , v 1 1 (.), v 1 k (.
) and a k for k = 1, α 2 , ω 2 are successively defined as follows:

v 0 1 (s) = a 0 cos(s), α 1 = 2 a 0 π π 0 Φ l1 (A l1 v 0 1 (s) -b 1 ) + cos(s)ds, then ω 1 = α 1 2ω 0 , -L 1 v 1 1 = A 11 v 0 1 -b 1 + + α 1 (v 0 1 ) ′′ , v 1 1 (0) = a 1 , (v 1 1 ) ′ (0) = 0, v 1 k be the unique 2π periodic solution of (19) and a k := v 1 k (0), for k = 1, α 2 = 2 a 0 π N l=1 Φ l1 π 0 H l1 (s) cos(s)ds + α 1 π 0 (v 1 1 ) ′′ cos(s)ds, with H l1 (s) = H(A l1 v 0 1 (s) -b l )   A l1 v 1 j (s) + N k =1 A 1k v 1 k (s)   , ω ε = ω 0 + εω 1 + ε 2 ω 2 ,
where

ω 2 = α 2 -ω 2 1 2ω 0 and L k be the differential operator λ 2 1 d 2 ds 2 + λ 2 k . Furthermore, if (A j1 v 0 1 -b j ) has got only simple roots for all j = 1, • • • , N , then T ε = O(ε -1 ), else T ε = O(ε -1/2 ).
In the theorem, v 1 k is classically obtained by a Fourier series. We give some indications of its initial condition in the next subsection 4.2.

Approximate non linear normal mode

The special initial conditions of the previous subsection can be explicited in order to find a solution where all the components are in phase at the same frequency. Indeed we shall obtain an approximate curve of initial conditions for which the solution is periodic up to the order ε for a time of the order ε -1 or ε -1/2 : this is up to the second order approximation a non linear normal mode in the sense of Rosenberg [START_REF] Rosenberg | On non linear vibrations of systems with many degrees of freedom[END_REF]; see [START_REF] Jiang | Large-amplitude non-linear normal mode of piecewise linear systems[END_REF] for a computation of non linear normal mode with unilateral contact and [START_REF] Kerschen | Nonlinear normal modes, Part I: A useful framework for the structural dynamics[END_REF] for a synthesis on non linear normal modes.

Corollary 4.1 (Explicit initial condtion for the approximate NNM)

Let a 0 = 0 be fixed, k = 1, A j1 = 0, κ j = bj Aj1a0 , and c l [κ] defined by formula [START_REF] Junca | Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave[END_REF]. a k from [START_REF] Miller | Applied Asymptotic Analysis[END_REF] are computed explicitly in the following cases:

1. if b j = 0 for j = 1, • • • , N , then a k = N j=1 Φ jk |A j1 a 0 | 2(λ 2 1 -λ 2 k ) - |A j1 a 0 | λ 2 k π + |A j1 a 0 | π +∞ l=1 (-1) l (4l 2 λ 2 1 -λ 2 k )(4l 2 -1) (20) 2. if 0 < b j , |κ j | < 1, a 0 A j1 < 0 for all j then a k = - N j=1 Φ jk |a 0 A j1 | +∞ l=1 (-1) l c l [-κ j ] l 2 λ 2 1 -λ 2 k ( 21 
)
3. if 0 < |κ j | < 1, and a 0 A j1 > 0 for all j then

a k = N j=1 Φ jk a 0 A j1 +∞ l=1 c l [κ j ] l 2 λ 2 1 -λ 2 k ( 22 
)
Thanks to Theorem 4.1, such initial data given by (a k ) k determine the approximate NNM.

Notice that there is no condition on a 1 . The other numerous cases may solved similarly.

Proof : The principle of the proof is simple: v 1 k is the periodic solution of the differential equation ( 19) and a k = v 1 k (0) has to be determined in order that the function v 1 k has an angular frequency equal to one. Solution of ( 19) is

v 1 k = A cos λ k λ1 s + B sin λ k λ1 s + w 1 k (s), where w 1
k is a particular solution associated to the right hand side which is of angular frequency equal to 1. Note that B = 0 as the initial velocity is null. We can get a function of angular frequency equal to 1 by setting a k = w 1 k (0). This condition may be written explicitly with formulas ( 12) which provides the expansion in Fourier series; formulas [START_REF] Paoli | Resonance in impact problems[END_REF], ( 21), [START_REF] Roseau | Vibrations des systèmes mécaniques. Méthodes analytiques et applications[END_REF] are then derived easily successively.

1. If b k = 0, k = 1, (19) is written: -L k v 1 k = N j=1 Φ jk A j1 a 0 cos(s) 2 + |A j1 a 0 | | cos(s)| 2 .
We use formula [START_REF] Hazim | Finite Elements for a Beam System with Nonlinear Contact Under Periodic Excitation[END_REF] to get the particular solution w 1 k and then formula (20):

w 1 k (s) = N j=1 Φ jk A l1 a 0 cos(s) 2(λ 2 1 -λ 2 k ) - |Aj1a0| λ 2 k π + 2|Aj1a0| π +∞ l=1 (-1) l 4l 2 λ 2 1 -λ 2 k cos(2ls) 4l 2 -1 . 
2. For the second case, ( 19) is written:

-L k v 1 k = - N j=1
Φ jk A j1 a 0 (-cos(s) + κ j ) + . We use [START_REF] Junca | Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave[END_REF] to obtain

w 1 k (s) = - N j=1 Φ jk |A j1 a 0 | +∞ l=1 c jl cos(ls) l 2 λ 2 1 -λ 2 k where c jl = c l [-κ j ].
3. For the third case ( 19) is written:

-L k v 1 k = N j=1 Φ jk A j1 a 0 (cos(s) -κ j ) + from which w 1 j (s) = N j=1 Φ jk a 0 A j1 +∞ l=1 c jl cos(ls) l 2 λ 2 1 -λ 2 k where c jl = c l [κ j ].

Numerical results of NNM

Using numerically Lindstedt-Poincaré expansions

Here we use the previous results and compute numerically a solution of system (17) using the approximation [START_REF] Paoli | Resonance in impact problems[END_REF]:

u ε (t) = v 0 (ω ε t)+ εv 1 (ω ε t)+ O(ε 2
) with the initial conditions of theorem 4.1. The first term v 0 is easy to obtain; for the second term v 1 an explicit formula is in principle possible using Fourier series such as for one degree of freedom but it is cumbersome so we choose to compute v 1 by solving numerically [START_REF] Nayfeh | Introduction to perturbation techniques[END_REF] with a step by step algorithm; we use as a black-box the routine ODE of SCILAB [START_REF]Copyright scilab INRIA ENPC[END_REF] to solve equations of theorem 4.1 after computing by numerical integration α 1 . We show numerical results for a system of the type:

M Ẍ + KX + εF (X) = 0 ( 23 
)
we still denote λ 2 j the eigenvalues and φ j the eigenvectors of the usual generalized eigenvalue problem Kφ jλ 2 j M φ j = 0 with t φ k M φ j = δ kj .We set: X = j u j φ j = φu. In this basis, the system may be written componentwise: ük + λ 2 k u k + t φ k εF (φu) = 0. We illustrate a simple local non linearity in the system [START_REF] Rosenberg | On non linear vibrations of systems with many degrees of freedom[END_REF], with the following nonlinearity

F (X) = (X 1 -β 1 )M φ 1 =   j u j φ j1 -β 1   + M φ 1 .
The system [START_REF] Rosenberg | On non linear vibrations of systems with many degrees of freedom[END_REF], written in the basis of the eigenvectors, simply becomes:

ü1 + λ 2 1 u 1 + ε   j φ j1 u j -β 1   + = 0, and for k = 1 ük + λ 2 k u k = 0.
We find in figure 3 a numerical example of the Lintsted-Poincaré approximation for 5 degrees of freedom with ε = 0.063 and with an energy of 0.03002. The left figure shows the 5 components of the solution with respect to time; the right figure, the solution in the configuration space: abscissa component 1 and ordinate components 2 to 5; these lines are rectilinear like in the linear case but the non symmetry may be particularly noticed on the smallest component which corresponds to the mode where the non linearity is active. 

Using optimization routines

We also find in figure 4 a numerical example with the same energy of 0.03002; it is computed with a purely numerical method described below. We notice that the solution is quite similar in both cases.

The numerical expansions of the previous subsection gives valid results for ε small enough; in many practical cases such as [START_REF] Hazim | Finite Elements for a Beam System with Nonlinear Contact Under Periodic Excitation[END_REF], ε may be quite large; in this case, it is natural to try to solve numerically the following equations with respect to the period T and the initial condition X(0). In other words, we look for a periodic solution of prescribed energy; this last condition is to ensure to obtain an isolated local solution: the previous expansions show that in general, the period of the solution depends on its amplitude prescribed here by its energy. To try to solve these equations with a black-box routine for nonlinear equations such as "fsolve" routine of SCILAB [START_REF]Copyright scilab INRIA ENPC[END_REF](an implementation of a modification of Powell hybrid method which goes back to [START_REF] Powell | An efficient method for finding the minimum of a function of several variables without calculating derivatives[END_REF]) in general fails to converge. Even in case of convergence, we should address the question of link of this solution with normal modes of the linearized system. So we prescribe that e = cε and for ε → 0, the solution is tangent to a linear eigenmode. In the case where all the eigenvalues of the linear system are simple, we define N (the number of degrees of freedom) non linear normal modes for which, it is reasonable to conjecture that they correspond to isolated solutions of (24) at least for small ε if we enforce for example Ẋ(0) = 0.

X(0) = X(T ), Ẋ(0) = Ẋ(T ) E(X) = e
Algorithm This definition of the solution of (24) tangent to a prescribed linear eigenmode provides a simple way of numerical approximation: using a continuation method coupled with a routine for solving a system of non linear equations. Define:

F (ε, X 0 , X 1 , T ) = [X(T ) -X 0 , Ẋ(T ) -X 1 , E(X) -cε],
where X is a numerical solution of the differential system

M Ẍ + KX + εF (X) = 0 X(0) = X 0 , Ẋ(0) = X 1
choose a small initial value of ε and an increment δ choose an eigenvector φ j X 0 (0

) = A ε φ j , X 1 (0) = B ε λ j φ j with E(X 0 (0), X 1 (0)) = cε for iter=1:itermax ε = ε + δ
with (X 0 (iter-1), X 1 (iter-1)) as a first approximation, solve for (X 0 (iter), X 1 (iter)),

F (ε, X 0 , X 1 , T ) = 0 if ||F (ε, X 0 , X 1 , T )|| > tolerance then ε = ε -δ, δ = δ/2
endif endfor This algorithm may be improved by using not only the solution associated to the previous value of ε to solve F (ε, X 0 , X 1 , T ) = 0 but also the derivative of the solution with respect to X 0 , X 1 , T .

Numerical results

These results are obtained by solving the differential equation with a step by step numerical approximation of the routine ode of Scilab without prescribing the algorithm. As we are looking for a periodic solution, this numerical approximation may be certainly improved in precision and computing time by using an harmonic balance algorithm. In figure 5, the same example with 5 degrees of freedom and energy equal 0.123 is displayed.

On the left of figure 5 we find the decimal logarithm of the absolute value of the Fourier transform of the solution; the Fourier transform is computed with the fast Fourier transform with the routine f f t of Scilab; we notice the frequency zero due to the non symmetry of the solution and multiples of the basic frequency; no other frequency appears; on the right the five components are plotted with respect to time; we still notice the non symmetry.

In figure 6 we find results with 20 degrees of freedom, ε = 0.272 and energy of 0.129; the NNM is computed by starting with an eigenvector associated to the largest eigenvalue . We see on the left in the configuration space that the components are in phase and on the right, the Fourier transform shows zero frequencies and multiple of the basic frequency. In figure 7 the energy is 0.29 and the NNM is computed by starting with an eigenvector associated to the smallest eigenvalue; we notice on the left, the solution in the configuration space: at zero each dof has a discontinuity in slope which is clear.

In figure 8, the shape of the NNM is displayed on the left for the NNM starting from the eigenvector associated to the smallest eigenvalue and on the right for the NNM starting from the second smallest eigenvalue. We notice that the shape is quite similar to the shape of the linear mode.

First order asymptotic expansion

In this subsection, we do not particularize the initial data on one eigenmode. We adapt the method of strained coordinates when all modes are excited. We loose one order of accuracy 

u ε k (0) = a k , uε k (0) = 0, k = 1, • • • , N.
Let us define N new times s k = λ ε k t and the following ansatz,

λ ε k = λ 0 k + ελ 1 k , λ 0 k = λ k , u ε k (t) = v ε k (λ ε k t) = v ε k (s k ) = v 0 k (s k ) + εr ε k (s k ).
The function v 0 k are easily obtained by the linearized equation. Indeed, the only measured nonlinear effect for large time is given by (λ 1 k ) N k=1 . To obtain these N unknowns, we replace the previous ansatz in the system ( 17),

(λ ε k ) 2 (v ε k ) ′′ (s k ) + λ 2 k v k (s k ) = -ε   N j=1 a kj v ε j λ ε j λ ε k s k -b k   + .
The right hand side is written in variable s k instead of s j . Performing the expansion with respect to epsilon powers yields

L k v 0 k = (λ 0 k ) 2 (v 0 k ) ′′ (s k ) + λ 2 k v 0 k (s k ) = 0, -L k r ε k (s k ) =   N j=1 a kj v 0 j λ 0 j λ 0 k s k -b k   + + 2λ k λ 1 k (v 0 k ) ′′ + R ε k . ( 24 
)
Noting that replacing v ε j (s j ) by v 0 24) implies a secular term of the order εt,

j λ 0 j λ 0 k s k in (
since s j = λ 0 j λ 0 k s k + O(εt)
, the functions v 0 j are smooth and the map S → S + is one-Lipschitz. These new kind of errors O(εt) are contained in the remainder of each right hand side:

R ε k (t) = O(εt) + O(ε|r ε |), |r ε | = N k=1 (r ε k ) 2 . ( 25 
)
If b k = 0, we identify the secular term with the Lemma 6.5 below and the relation S + = S/2 + |S|/2. Then, we remove the resonant term in the source term for the remainder r ε k , which gives us λ 1 k = a kk 4λ k .

If b k = 0, we compute λ 1 k numerically with the following orthogonality condition to cos(s) written in the framework of almost periodic functions, 0 = lim

T →∞ 1 T T 0     N j=1 a kj v 0 j λ 0 j λ 0 k s k -b k   + + 2λ k λ 1 k (v 0 k ) ′′   • cos(s)ds.
The accuracy of the asymptotic expansion depends on the behavior of the solution φ = (φ 1 , • • • , φ N ) of the N following decoupled linear equations with right coefficients λ 1 k to avoid resonance

-L k φ k (s k ) =   N j=1 a kj v 0 j λ 0 j λ 0 k s k -b k   + + 2λ k λ 1 k (v 0 k ) ′′ . (26) 
Furthermore each function r ε k depends on all times s j , j = 1, • • • , N and becomes almostperiodic, i.e.

r ε k = r ε k (s 1 , • • • , s N ).
Thus the method of strained coordinates, only working for periodic functions, fails to be continued. Nevertheless, we obtain the following result proved in the Appendix.

Theorem 4.2 (All modes) If λ 1 , • • • , λ N are Z independent, then, for any T ε = o(ε -1 ), i.e. such that lim ε→0 T ε = +∞, and lim ε→0 ε × T ε = 0, we have for all k = 1, • • • , N , lim ε→0 u ε k (t) -v 0 k (λ ε k t) W 2,∞ (0,Tε) = 0 where λ ε k = λ k + ελ 1 k , v 0 k (s) = a k cos(s)
, and λ 1 k is defined by:

λ 1 k = 1 2λ k a 0 lim T →+∞ 1 T T 0   N j=1 a kj v 0 j λ 0 j λ 0 k s k -b k   + cos(s)ds.
Furthermore, if b k = 0, the previous integral yields:

λ 1 k = a kk 4λ k .
Notice that accuracy and large time are weaker than these obtained in Theorem 4.1. It is due to the inevitable accumulation of the spectrum near the resonance and the various times using in the expansion. On the other side we have the following direct improvement from the Theorem 4.1:

Remark 4.1 (Polarisation) If only one mode are excited, for instance the number 1, i.e. a 1 = 0, a k = 0 for all k = 1, then we have the estimate for all t ∈ [0, ε -1 ]:

u ε 1 (t) = v 0 1 (λ ε 1 t) +O(ε). u ε k (t) = 0 +O(ε) for all k = 1.

Expansions with even periodic functions

Fourier expansion involving only cosines are used throughout this paper. There is never sinus. In this short section we explain why it is simple to work with even periodic functions and we give some hints to work with more general initial data.

First, we want to work only with co-sinus to avoid two secular terms. If we return to equation ( 6

): -α 0 (v ′′ 1 + v 1 ) = (v 0 ) + + α 1 v ′′ 0 .
A priory, we have two secular terms in the right hand side, one with cos(s) and another with sin(s). Only one parameter α 1 seems not enough to cancel out all secular terms. Otherwise, if v 0 ∈ R, u, S are 2π periodic even functions, g ∈ C 0 (R, R) such that 0 = 2π 0 e is (S(s) + g(u(s)))ds then the solution of

v ′′ + v = S(s) + g(u), v(0) = v 0 , v ′ (0) = 0,
is necessarily a 2π periodic even function. Since we only work with 2π periodic even functions we have always at most one secular term proportional to cos(s). Now we investigate the case involving not necessarily even periodic functions. In general, uε 0 = 0 and u ε is the solution of

üε + u ε + εf (u ε ) = 0, u ε (0) = u ε 0 , uε (0) = uε 0 .
By the energy 2E = u2 + u 2 + εF (u), where F ′ = 2f and F (0) = 0, we know that u ε is periodic for ε small enough, for instance with an implicit function theorem see [START_REF] Verhulst | Nonlinear differential equations and dynamical systems[END_REF] also valid for Lipschitz function [START_REF] Clarke | Optimization and nonsmooth analysis[END_REF] in our case. Denote by τ ε the first time such that uε (t) = 0. Such time exists thanks to the periodicity of u ε . Now, let U ε defined by

U ε (t) = u ε (t + τ ε ). U ε is the solution of Üε + U ε + εf (U ε ) = 0, U ε (0) = U ε 0 = u ε (τ ε ), Uε (0) = 0.
The initial data U ε 0 depends on the initial position and initial velocity of u ε through the energy, (

U ε 0 ) 2 + εF (U ε 0 ) = (u ε 0 ) 2 + ( uε 0 ) 2 + εF (u ε 0 )
. For instance, if u ε 0 and u0 ε are positive then U ε 0 is positive and

U ε 0 = (u ε 0 ) 2 + ( uε 0 ) 2 + ε(F (u ε 0 ) -F (u ε 0 ) 2 + ( uε 0 ) 2 + O(ε 2
) . We can apply the method of strained coordinates for U ε only with even periodic functions:

U ε (t) = v 0 (ω ε t) + εv 1 (ω ε t) + O(ε 2 ). The expansion obtained for u ε by U ε , with φ ε = -ω ε τ ε is: u ε (t) = v 0 (ω ε t + φ ε ) + εv 1 (ω ε t + φ ε ) + O(ε 2 ),
which is a good ansatz in general for u ε , where v 0 and v 1 are even 2π-periodic functions. The method of strained coordinates becomes to find the following unknowns φ 0 , ω 1 , φ 1 , ω 2 , φ 2 such that

ω ε = ω 0 + εω 1 + ε 2 ω 2 + • • • , φ ε = φ 0 + εφ 1 + ε 2 φ 2 + • • • .
Indeed, we have two parameters to cancel out two secular terms at each step. If one is only interested by the nonlinear frequency shift, it is simpler to work only with cosines.

Otherwise, if f is an odd function, we can work only with odd periodic function. It is often the case in literature when occurs a cubic non-linearity. See for instance [START_REF] Kevorkian | Multiple Scale and Singular Perturbations Problems[END_REF][START_REF] Miller | Applied Asymptotic Analysis[END_REF][START_REF] Nayfeh | Introduction to perturbation techniques[END_REF] for the Duffing equation, the Rayleigh equation or the Korteweg-de Vries equation.

Appendix: technical proofs

We give some useful results about energy estimates and almost periodic functions in subsection 6.1. Next we complete the proofs for each previous asymptotic expansions in subsection 6.2. The point is to bound the remainder for large time in each expansion.

Useful lemmas

The following Lemma is useful to prove an expansion for large time with non smooth nonlinearity.

Lemma 6.3 [Bounds for large time ]

Let w ε be a solution of

w ′′ ε + w ε = S(s) + f ε (s) + εg ε (s, w ε ), w ε (0) = 0, w ′ ε (0) = 0. ( 27 
)
If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants : 

|g ε (s, u)| < ∞,
that is to say that g ε (s, u) is locally bounded with respect to u for ε ∈ (0, 1) and s ∈ (0, +∞), then, there exists ε 0 > 0 and γ > 0 such that, for 0 < ε < ε 0 , w ε is uniformly bounded in W 2,∞ (0, T ε ), where

T ε = γ ε (resp. γ √ ε ).
Notice that f ε and g ε are not necessarily continuous. Indeed this a case for our asymptotic expansion, see Lemme 3.1 and its applications throughout the paper. But in previous sections the right hand side is globally continuous, i.e. S + f ε + εg ε (., w ε ) is continuous, so, in this case, w ε is C 2 .

Proof of the Lemma 6.3: First we remove the non resonant periodic source term which is independent of ε. Second, we get L ∞ bound for w ε and w ′ ε with an energy estimate. Third, with equation ( 27), we get an uniform estimate for w ′′ ε in L ∞ (0, T ε ) and the W 2,∞ regularity.

Step 1: remove S It suffices to write w ε = w 1 + w ε 2 where w 1 solves the linear problem:

w ′′ 1 + w 1 = S(s), w 1 (0) = 0, w ′ 1 (0) = 0. ( 28 
)
w 1 and w ′ 1 are uniformly bounded in L ∞ (0, +∞) since there is no resonance. More precisely, w 1 = F (s) + A cos(s) + B cos(s), where F is 2π periodic. F is obtained by Fourier expansion without harmonic n = ±1 since S is not resonant:

F (s) = n =±1 c n 1 -n 2 e ins with S(s) = n =±1 c n e ins .
F is uniformly bounded, with Cauchy-Schwartz inequality set

C 2 0 = n =±1 |n 2 -1| -2 , we obtain: F L ∞ ≤ n =±1 |cn| |n 2 -1| ≤ C 0 S L 2 (0,2π) ≤ C 0 S L ∞ (0,2π) . Similarly, set D 2 0 = n =±1 n 2 |n 2 -1| -2 , we have F ′ L ∞ ≤ D 0 S L ∞ (0,2π
) . Furthermore, 0 = w 1 (0) = F (0) + A, and 0 = (w 1 ) ′ (0) = F ′ (0) + B, then, A and B are well defined. w , 1 is also bounded, i.e. there exists M 1 > 0 such that w 1 W 1,∞ (0,+∞) ≤ M 1 . Notice that from equation [START_REF] Van Dyke | Perturbation Methods in Fluid Mechanics[END_REF], w 1 belongs to W 2,∞ .

Then we get an equation similar to [START_REF] Vanderborck | Structural damage detection and localization by non-linear acoustic spectroscopy[END_REF] for w ε 2 with S ≡ 0 and the same assumption for the same f ε and the new g ε : g ε (s, w) = g ε (s, w 1 + w).

(w ε 2 ) ′′ + (w ε 2 ) = f ε (s) + εg ε (s, w ε 2 ), (w ε 2 )(0) = 0, (w ε 2 ) ′ (0) = 0. ( 29 
)
Step 2: energy estimate Second, we get an energy estimate for w ε 2 . We fix R > 0 such that R is greater than the uniform bound M 1 obtained for w 1

ε and yet R = M 1 + ρ with ρ > 0. Let us define

2E(s) = ((w ε 2 ) ′ (s)) 2 + (w ε 2 )(s) 2 , E(s) = sup 0<τ <s E(τ ),
and T ε be the first time T > 0 such that 2E(T ) ≥ ρ 2 , i.e. ρ estimates the size of (w ε 2 ) and (w ε 2 ) ′ .

Multiplying the differential equation ( 29) by (w ε 2 ) ′ , we have for all s < T < T ε (ρ) the following inequalities since sup

0<τ <s |(w ε 2 ) ′ (τ )| ≤ 2E(s), and T 0 |f ε (s)|ds ≤ CεT , E(s) = s 0 f ε (τ )(w ε 2 ) ′ (τ )dτ + ε s 0 g ε (τ, (w ε 2 )(τ ))(w ε 2 ) ′ (τ )dτ, ≤ Cεs 2E(s) + εsM R 2E(s), E(T ) ≤ CεT 2E(T ) + εT M R 2E(T ), εT ≥ E(T )/2 M R + C .
Notice that if 2E(T ) < ρ 2 for all T > 0 then T ε = +∞. The critical case is when T ε is finite and E(T ) approaches ρ 2 /2 when T goes to T ε (ρ). Thus we have

T ε ≥ ρ 2ε(M R + C) and E(t) ≤ ρ 2 2 for t ≤ T ε = γ ε with γ = ρ 2(MR+C)
. The proof is similar when

s 0 |f ε (τ )|dτ ≤ C √ εT then T ε ≥ ρ 2 √ ε( √ εM R + C) .
For completeness, we state a similar and straightforward version of Lemma 6.3 useful for systems.

Lemma 6.4 [Bounds for large time for systems ]

Let w ε = (w ε 1 , • • • , w ε N )
be the solution of the following system:

(λ 1 ) 2 (w ε k ) ′′ + (λ k ) 2 w ε k = S k (s) + f ε k (s) + εg ε k (s; w ε ), w ε k (0) = 0, (w ε k ) ′ (0) = 0, k = 1, • • • , N. (30) 
If source terms satisfy the following conditions where M > 0, C > 0 are fixed constants : 

(b) {λ 2 , • • • , λ N } / ∈ λ 1 Z, 2. |f ε k | ≤ M and for all T , T 0 |f ε (s)|ds ≤ CεT or C √ εT , 3. for all R > 0: M R = max k sup ε∈(0,1),s>0,w 2 1 +•••+w 2 N <R 2 |g ε k (s; u)| < ∞,
then, there exists ε 0 > 0 and γ > 0 such that, for 0

< ε < ε 0 , w ε is uniformly bounded in W 2,∞ (0, T ε ), where T ε = γ ε or γ √ ε . 
Proof : First we remove source terms S k independent of ε setting w

ε k = w k,1 + w ε k,2 where w k,1 is the solution of λ 2 1 w ′′ k,1 + λ 2 k w k,1 = S k , w k,1 (0) = 0, w ′ k,1 (0) = 0.
As in the proof of Lemma 6.3, w 1,1 belongs in W 2,∞ thanks to the non-resonance condition 1.(a). For k = 1, there is no resonance since λ k λ1 / ∈ Z, i.e. the non-resonance condition 1.(b), thus a similar expansion also yields w k,1 belongs in W 2,∞ (R, R). Now w ε k,2 are solutions of the following system for k

= 1, • • • , N λ 2 1 (w ε k,2 ) ′′ + λ 2 k (w ε k,2 ) = f ε k (s) + εg ε k (s; w ε 2 ), (w ε k,2 )(0) = 0, (w ε k,2 ) ′ (0) = 0, with w ε = w 1 + w ε 2 , w ε 2 = (• • • , w ε k,2 , • • • ) and g ε k (s; • • • , w k , • • • ) = g ε k (s; • • • , w k,1 + w k , • • • ).
The end of the proof of Lemma 6.4 is a straightforward generalization of the the proof of Lemma 6.3 with the energy: 2E

(w 1 , • • • , w N ) = N k=1 (λ 1 ) 2 ( ẇk ) 2 + (λ k ) 2 w 2 k .
For systems, we also have to work with linear combination of periodic functions with different periods and nonlinear function of such sum. So we work with the adherence in L ∞ (R, C) of span{e iλt , λ ∈ R}, namely the set of almost periodic functions C 0 ap (R, C), and the Hilbert space of almost-periodic function is L 2 ap (R, C), see [START_REF] Corduneanu | Almost periodic functions[END_REF], with the scalar product

u, v = lim T →+∞ 1 T T 0 u(t)v(t)dt.
We give an useful Lemma about the spectrum of |u| for u ∈ C 0 ap (R, R). Let us recall definitions for the Fourier coefficients of u associated to frequency λ: c λ [u] and its spectrum:

Sp [u], c λ [u] = u, e iλt = lim T →+∞ 1 T T 0 u(t)e -iλt dt, Sp [u] = {λ ∈ R, c λ [u] = 0}. (31) Lemma 6.5 [Property of the spectrum of |u| ] Let u ∈ C 0 ap (R, R) a function with a finite spectrum: Sp [u] ⊂ {±λ 1 , • • • , ±λ N }. If (λ 1 , • • • , λ N ) are Z-independent, then λ k / ∈ Sp [ |u| ] for all k. Proof : Notice that 0 / ∈ Sp [u].
The result is quite obvious for u 2 . We first prove the result for f (u 2 ) where f is smooth. Then, we conclude by approximating |u| by a smooth sequence f n (u 2 ) = 1/n + u 2 , and using the L ∞ stability of the spectrum. Let E be the set of all Z linear combinations of elements of

S 2 = {0, ±λ ± kj , k, j = 1, • • • N }, where λ ± kj = λ k ± λ j . Thus Sp [f (u 2 )] is a subset of E since Sp [u 2 ] ⊂ S 2 . Notice that λ ± jk = ±λ ± kj , λ - kk = 0, λ + kk = 2λ k = λ + kj + λ - kj .
Choosing k = 1 for instance, so λ 1 = 0, it suffices to prove that λ 1 / ∈ E. Assume the converse, i.e., λ 1 ∈ E. Then, for k < j, there exists some integers (c ± kj ) k<j) such that: λ 1 = k<j (c + kj λ + kj + c - kj λ - kj ). Therefore, defining c ± jk by ±c ± kj for k < j, we have:

λ 1 = λ 1 j =1 (c + 1j + c - 1j ) + λ 2 j =2 (c + 2j + c - 2j ) + • • • + λ N j =1 (c + k=N j + c - N j ).
Using the Z-independence, with d kj = c + kj + c - kj for k = j and d kk = 0, we have following system: 1

= D 1 = j d 1j , 0 = D k = j d kj , for all k > 1.
Summing up, the N -1 last equations in Z 2Z , and using the fact:

d jk ≡ d kj modulo 2, we have: 0 ≡ N k=2 D k ≡ N j=2 d 1j +2 k<j d kj ≡ N j=2 d 1j , then D 1 ≡ 0, i.e. D 1 is even. It's impossible since D 1 = 1. So λ 1 /
∈ E and the proof is complete.

Bounds for the remainders

Now, we prove each asymptotic expansion given in previous sections, i.e. we bound each remainders with energy estimates up to a large time.

Proof of Proposition 2.1 : First we give the outline of the proof. Notice that all these computations only involve the function cos. Then, the only way to have a secular term in equations defining v 1 and v 2 is a cos(s) in the right-hand side. So, the good for k = 1, • • • , N , with S k = H(a k1 v 0 1b k ) N j=1 a kj v 1 j + α 2 v 0 k " + α 1 v 1 k ", and α 1 , α 2 are well chosen to avoid secular term when k = 1. Thus, all S k are 2π periodic. S 1 is not resonant with L 1 . The λ k are Z independent. We can apply Lemma 6.4 which is enough to conclude the proof.

Proof of Theorem 4.2 : The proof follows two steps. First the solution for linear equations [START_REF]Copyright scilab INRIA ENPC[END_REF] are bounded by o(t). Second, energy estimates are used to bound r ε . At the end we prove remark 4.1. Notice that we do not use Lemmas 3.1, 3.2. Indeed, we have no term with χ ε . We only use that functions u + and v 0 k are Lipschitz, the Lemma 6.5 to identify resonant terms when b k = 0 and an energy estimate. But, since all modes are excited, the accuracy is weaker than the precision obtained in Theorem 4.1, as in [START_REF] Sànchez-Palencia | Justification de la méthode des échelles multiples pour une classe d'équations aux dérivées partielles[END_REF].

Step 1: the N problems (26) involves decoupled equations rewritten as follow with ω > 0,

φ ′′ (s) + ω 2 φ(s) = S(s) ∈ C 0 ap (R, R), ±ω / ∈ Sp[S].
There is no resonance since ±ω are not in the spectrum of S. But, Sp[S] is dense in R. Indeed λ 1 , • • • , λ N are Z independent. In general, we cannot expect that φ is bounded on the real line, see [START_REF] Corduneanu | Almost periodic functions[END_REF], but φ is less than O(s) for large time. We can compute explicitly φ which is enough to have the convergence in W 1,∞ (0, T ε ). Furthermore r ε k satisfies the second order differential equation [START_REF] Rousselet | Non destructive control of cables: O.D.E. models of non linear vibrations[END_REF] which is enough to get the convergence in W 2,∞ . About remark 4.1: From Theorem 4.2, this result its obvious. Let us explain why we cannot go further up to the order ε 2 .

E(T ) = N k=1 λ 2 1 ((z ε k ) ′ ) 2 + λ 2 k (z ε k ) 2 ≤ 2Cε 2 T 2 T 0 N k=1 |(z ε k ) ′ |(t)dt + 2Cε T 0 |(z ε ) ′ • z ε |dt ≤ Dε 2 T 2.
Unfortunately S k is not periodic since v 1 j is quasi-periodic for j = 1. Indeed, the following initial conditions v 1 k (0) = 0, (v 1 k ) ′ (0) = 0, k = 1, yields to a quasi-periodic function, sum of two periodic functions with different periods 2π and 2πλ 1 /λ k , thus a globally bounded 
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 1 non resonance conditions with S k (s) are 2π-periodic functions and |S k (s)| ≤ M , (a) S 1 (s) is orthogonal to e ±is , i.e.

2π 0 S 1

 01 (s)e ±is ds = 0,

0 S 0 S- 1 s 0 S 0 SStep 2 :

 001002 φ(s) = A cos(ωs) + B sin(ωs) + ψ(s), ωψ(s) = s 0 S(σ) sin(ω(sσ))dσ = sin(ωs) s (σ) cos(ωσ)dσcos(ωs) s (σ) sin(ωσ)dσ. The condition ±ω / ∈ Sp[S] is lim s→+∞ s (σ) exp(±iωσ)dσ = 0. That is to say s (σ) exp(±iωσ)dσ = o(s) when s → +∞, thus ψ and φ are negligible compared to s for large time. Let us decompose the remainder in the following way r ε k = φ k + w ε k . From equation (25) and the previous bound for φ k we have in variable t instead of s k for convenienceL k w ε k (t) = O(εt) + (O(εφ k ) + O(ε|w ε |)) = O(εt) + O(ε|w ε |), ) since φ k (t) = o(t). Now, we remove the first part of the right hand side withw ε k = wε k + z ε k and wε k is solution of L k wε k = O(εt).Classical energy estimates (or explicit computations as for φ) yields to wε k (t) = O(εt 2 ). Thus there exists a constant C 1 > 0 such that z ε k satisfies|L k z ε k | ≤ C(ε 2 t 2 + ε|z ε |).Multiplying each inequality by |(z ε k ) ′ |, summing up with respect to k, integrating on [0, T ], by Cauchy-Schwarz inequality, with D = 2C(min(λ k ) + min(λ k ) 2 ) we get

5

 5 

  dt, thus Y (0) = 0 and for all t ∈ [O, T ],E(t) = Y ′ (t) ≤ Dε 2 T 2.5 Y (t) + DεY (t). Y (T ) ≤ εT 2.5 exp(DεT ) and then E(T ) ≤ 2Dε 3 T 5 exp(DεT ). Finally r ε k = φ k + wε k + z ε k = o(T ) + O(εT 2 ) + O(ε 1.5 T 2.5 exp(DεT )), so for anyT ε = o(ε -1 ) we have in W 1,∞ (0, T ε ) for all T ≤ T ε εr ε (T ) = o(εT ε ) + O(ε 2 T 2 ε ) + O(ε 2.5 T 2.5 ε ),

function v 1 kλ j λ 1 +

 11 (s) = φ 1 k (s)φ 1 k (0) cos λ k λ 1s . So we cannot apply Lemma 6.4.Let us decomposeS k = P k + Q k for k = 2 where P k is periodic and Q k is almost-periodic Q k (s) = -H(a k1 v 0 1 (s)b k ) Let w k be a solution of -L k w k = Q k then Sp[w k ] ∈ j ± Z ,so the spectrum of w k is discrete and there is resonance in the N -1 equations, -L k r ε k = S k + • • • , k = 1 and the expansion does not still valid for time of the order ε -1 .

  1. S(s) is a 2π-periodic function orthogonal to e ±is , and |S(s)| ≤ M for all s, 2. |f ε | ≤ M and for all T ,

	0	T	|f ε (s)|ds ≤ CεT (resp. C	√	εT ),
	3. for all R > 0: M R =	sup		
	ε∈(0,1),s>0,R>|u|		
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choice of α 1 and α 2 , is enough to remove secular term with cos(s). Now, it suffices to control r ε for large time. A computation shows that the remainder R ε of equation [START_REF] Ekeland | Convexity methods in Hamiltonian mechanics[END_REF] satisfies:

Then, r ε is like w ε in Lemma 6.3, and the term f ε comes from χ ε which is estimated by Lemmas 3.1, 3.2. More precisely, an exact computation of R ε in equation ( 7) leads to

From ( 16) we also have

. Now, we can rewrite equation [START_REF] Ekeland | Convexity methods in Hamiltonian mechanics[END_REF] in the following way

which allows us to conclude with Lemma 6.3.

The proof for other propositions 2.2, 2.3 in section 2 are similar. We now complete the proof for the asymptotic expansions for systems given in section 4.

Proof of Theorem 4.1 : As in the proof of Proposition 2.1, the same technique is used component by component for Theorems 4.1, with similar energy estimates we can conclude with the Lemma 6.4 for system to control all r ε k . To simplify the writing of the proof, let us assume that Φ = Id in [START_REF] Kevorkian | Multiple Scale and Singular Perturbations Problems[END_REF]. In this case, a complete computation of the remainder gives us:

with notation of the proof of Proposition 2.1 and

Let u, v, w be three functions, as previously, we have:

A key ingredient is the energy 2E = k (α 0 (r ′ k ) 2 + λ 2 k r 2 k ) for the homogeneous system:

L k r k = 0, k = 1, • • • , N and the for the inhomogeneous system: