Adaptive Multilevel Stochastic Approximation of the Value-at-Risk - Faculté des Sciences de Sorbonne Université Access content directly
Preprints, Working Papers, ... Year : 2024

Adaptive Multilevel Stochastic Approximation of the Value-at-Risk

Approximation stochastique adaptative à plusieurs niveaux de la valeur à risque

Abstract

Crépey, Frikha, and Louzi (2023) introduced a multilevel stochastic approximation scheme to compute the value-at-risk of a financial loss that is only simulatable by Monte Carlo. The optimal complexity of the scheme is in $O(\varepsilon^{-5/2})$, $\varepsilon>0$ being a prescribed accuracy, which is suboptimal when compared to the canonical multilevel Monte Carlo performance. This suboptimality stems from the discontinuity of the Heaviside function involved in the biased stochastic gradient that is recursively evaluated to derive the value-at-risk. To mitigate this issue, this paper proposes and analyzes a multilevel stochastic approximation algorithm that adaptively selects the number of inner samples at each level, and proves that its optimal complexity is in $O(\varepsilon^{-2}|\ln{\varepsilon}|^{5/2})$. Our theoretical analysis is exemplified through numerical experiments.
Fichier principal
Vignette du fichier
main.pdf (865 Ko) Télécharger le fichier
figure/value_at_risk_accuracy_comparison.pdf (21.82 Ko) Télécharger le fichier
figure/value_at_risk_accuracy_comparison_2.pdf (21.91 Ko) Télécharger le fichier
figure/value_at_risk_comparison.pdf (21.63 Ko) Télécharger le fichier
figure/value_at_risk_comparison_2.pdf (21.77 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-04670735 , version 1 (13-08-2024)

Identifiers

  • HAL Id : hal-04670735 , version 1

Cite

Stéphane Crépey, Noufel Frikha, Azar Louzi, Jonathan Spence. Adaptive Multilevel Stochastic Approximation of the Value-at-Risk. 2024. ⟨hal-04670735⟩
0 View
1 Download

Share

Gmail Mastodon Facebook X LinkedIn More