Skip to Main content Skip to Navigation
Journal articles

Three‐junction monolithic interconnected modules for concentrator photovoltaics

Abstract : A core issue in concentrator photovoltaic technology (CPV) is the resistive losses in cells that usually limits the maximum photoconversion efficiency under high concentration. We propose the use of three‐junction monolithic interconnected modules (MIM) to mitigate resistive losses by providing high‐voltage low‐current power. First, we present the fabrication of InGaP/InGaAs/Ge front‐contacted microcells with various designs and dimensions. Front‐contacted cells are the key enabler for the MIM fabrication and demonstrate good electrical characteristics under one sun, similar to standard‐contacted cells. The base front contact size is minimized to limit the unutilized area on the wafer. Second, fabrication techniques for interconnecting cells in MIM are described. Finally, electrical measurements show a record conversion efficiency of 35.1% under 798 suns for the first three‐junction MIM reported (17.8% when considering the entire device area). Versatility and further optimization of the devices are discussed to enlarge their field of application.
Complete list of metadata
Contributor : Maxime Darnon <>
Submitted on : Friday, March 19, 2021 - 4:06:05 PM
Last modification on : Sunday, March 21, 2021 - 3:14:35 AM


Albert - MIM.pdf
Publication funded by an institution



Pierre Albert, Abdelatif Jaouad, Gwenaëlle Hamon, Maïté Volatier, Yannick Deshayes, et al.. Three‐junction monolithic interconnected modules for concentrator photovoltaics. Progress in Photovoltaics, Wiley, In press, ⟨10.1002/pip.3404⟩. ⟨hal-03174950⟩



Record views


Files downloads